Giải bài 5 trang 100 vở thực hành Toán 9
Cho tam giác ABC cân tại A có ba đỉnh nằm trên đường tròn (O). Đường cao AH cắt (O) tại D. Biết (BC = 24cm,AC = 20cm). Tính chiều cao AH và bán kính đường tròn (O).
Đề bài
Cho tam giác ABC cân tại A có ba đỉnh nằm trên đường tròn (O). Đường cao AH cắt (O) tại D. Biết BC=24cm,AC=20cm. Tính chiều cao AH và bán kính đường tròn (O).
Phương pháp giải - Xem chi tiết
+ Chứng minh H là trung điểm của BC nên tính được HC.
+ Tam giác ACH vuông tại H nên theo định lí Pythagore, ta tính được AH.
+ Chứng minh tam giác ACD vuông tại C.
+ Trong tam giác ACD vuông tại C ta có: AC2=AH.AD nên tính được AD
+ Bán kính của đường tròn (O) là R=AD2.
Lời giải chi tiết
(H.5.5)
Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung trực của đoạn BC, suy ra H là trung điểm của BC.
Tam giác ACH vuông tại H nên theo định lí Pythagore, ta được AH2=AC2−HC2, suy ra AH=16cm.
Tam giác ACD có AD là đường kính của đường tròn (O) nên tam giác ACD vuông tại C.
Trong tam giác ACD vuông tại C ta có: AC2=AH.AD, suy ra AD=AC2AH=25cm.
Vậy bán kính của đường tròn (O) là R=AD2=252cm.