Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài tập ôn tập cuối năm - SBT Toán 9 KNTT


Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Cho phương trình ({x^2} + 4x + m = 0). a) Giải phương trình với (m = 1). b) Tìm m để phương trình có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).

Đề bài

Cho phương trình \({x^2} + 4x + m = 0\).

a) Giải phương trình với \(m = 1\).

b) Tìm m để phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).

Phương pháp giải - Xem chi tiết

a) Thay \(m = 1\) vào phương trình đầu bài cho, ta thu được phương trình bậc nhất hai ẩn. Giải phương trình bằng cách sử dụng công thức nghiệm thu gọn.

b) + Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).

+ Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\).

+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.

Lời giải chi tiết

a) Với \(m = 1\) ta có: \({x^2} + 4x + 1 = 0\).

Vì \(\Delta ' = {2^2} - 1 = 3\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - 2 - \sqrt 3 \); \({x_2} =  - 2 + \sqrt 3 \).

b) \({x^2} + 4x + m = 0\) (*)

Phương trình (*) có hai nghiệm khi \(\Delta ' \ge 0\), tức là \(4 - m \ge 0\), suy ra \(m \le 4\) (1).

Theo định lí Viète ta có: \({x_1} + {x_2} =  - 4;{x_1}.{x_2} = m\).

Ta có:

\(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} \\= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)

Do đó, \({\left( { - 4} \right)^2} - 2.m = 10\), suy ra \(m = 3\) (thỏa mãn (1)).

Vậy \(m = 3\) thì thỏa mãn yêu cầu bài toán.


Cùng chủ đề:

Giải bài 4. 33 trang 52 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 4. 34 trang 52 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 4. 35 trang 52 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 4. 36 trang 53 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 4. 37 trang 53 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 5. 1 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 2 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 3 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 4 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 5. 5 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1