Giải bài 6. 15 trang 24 SGK Toán 10 – Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài 17. Dấu của tam thức bậc hai Toán 10 Kết nối tri thức


Giải bài 6.15 trang 24 SGK Toán 10 – Kết nối tri thức

Xét dấu các tam thức bậc hai sau:

Đề bài

Xét dấu các tam thức bậc hai sau:

a) \(3{x^2} - 4x + 1\)

b) \({x^2} + 2x + 1\)

c) \( - {x^2} + 3x - 2\)

d) \( - {x^2} + x - 1\)

Phương pháp giải - Xem chi tiết

Xét dấu tam thức bậc hai \(f(x) = a{x^2} + bx + c\)

Bước 1: Tính \(\Delta  = {b^2} - 4ac\)

Bước 2:

-   Nếu \(\Delta  < 0\) thì \(f(x)\) luôn cùng dấu với a với mọi \(x \in \mathbb{R}\)

-   Nếu \(\Delta  = 0\) thì \(f(x)\)có nghiệm kép là  \({x_0}\) . Vậy \(f(x)\)cùng dấu với a với \(x \ne {x_0}\)

-   Nếu \(\Delta  > 0\) thì \(f(x)\)có 2 nghiệm là \({x_1};{x_2}\)\(({x_1} < {x_2})\). Ta lập bảng xét dấu.

Lời giải chi tiết

a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta  = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):

Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)

b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta  = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x =  - 1\) và \(g(x) > 0\)với \(x \ne  - 1\)

c) \(h(x) =  - {x^2} + 3x - 2\) có \(\Delta  = 1 > 0\), \(a =  - 1\)

Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)

d) \(k(x) =  - {x^2} + x - 1\) có \(\Delta  =  - 3\), a=-1

Suy ra \( k(x) < 0 \) với mọi \(x \in \mathbb{R}\)


Cùng chủ đề:

Giải bài 6. 10 trang 16 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 11 trang 16 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 12 trang 16 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 13 trang 16 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 14 trang 16 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 15 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 16 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 17 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 18 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 19 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 20 trang 27 SGK Toán 10 – Kết nối tri thức