Giải bài 6. 20 trang 27 SGK Toán 10 – Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài 18. Phương trình quy về phương trình bậc hai Toán 1


Giải bài 6.20 trang 27 SGK Toán 10 – Kết nối tri thức

Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \)

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Phương pháp giải - Xem chi tiết

Bước 1: Bình phương hai vế và giải phương trình nhận được

Bước 2: Thử lại các giá trị x nhận được ở trên có thỏa mãn phương trình đã cho hay không kết luận nghiệm

Lời giải chi tiết

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x =  - 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}{x^2} + 2x - 3 =  - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{4}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn

Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 3 =  - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.

Vậy phương trình vô nghiệm

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 5x - 4 =  - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 3\) hoặc \(x = 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.

Vậy nghiệm của phương trình là x=2


Cùng chủ đề:

Giải bài 6. 15 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 16 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 17 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 18 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 19 trang 24 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 20 trang 27 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 21 trang 27 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 22 trang 27 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 23 trang 27 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 24 trang 28 SGK Toán 10 – Kết nối tri thức
Giải bài 6. 25 trang 28 SGK Toán 10 – Kết nối tri thức