Giải bài 60 trang 119 sách bài tập toán 11 - Cánh diều
Một chì neo câu cá có dạng khối chóp cụt tứ giác đều được làm hoàn toàn bằng chì có khối lượng 137 g.
Đề bài
Một chì neo câu cá có dạng khối chóp cụt tứ giác đều được làm hoàn toàn bằng chì có khối lượng 137 g. Biết cạnh đáy nhỏ và cạnh đáy lớn của khối chóp cụt đều dài lần lượt 1 cm và 3 cm, khối lượng riêng của chì bằng 11,3 \(g/c{m^3}\). Tính chiều cao của chì neo câu cá đó theo đơn vị centimét (làm tròn kết quả đến hàng đơn vị).
Phương pháp giải - Xem chi tiết
Để tính thể tích của chì neo câu cá đó, ta sẽ lấy thương khối lượng của chì neo câu cá đó và khối lượng riêng của chì.
Do chì neo câu cá có dạng hình chóp cụt đều, nên công thức tính thể tích của khối chóp cụt đều: \(V = \frac{1}{3}h\left( {{S_1} + \sqrt {{S_1}{S_2}} + {S_2}} \right)\), với \(h\) là chiều cao và \({S_1}\), \({S_2}\) lần lượt là diện tích hai đáy của khối chóp cụt đó.
Từ đó, chiều cao của khối chì là \(h = \frac{{3V}}{{{S_1} + \sqrt {{S_1}{S_2}} + {S_2}}}\).
Lời giải chi tiết
Thể tích của khối chì neo câu cá đó là: \(V = \frac{{137}}{{11,3}} = \frac{{1370}}{{113}}{\rm{ }}\left( {c{m^3}} \right)\).
Do chì neo câu cá có dạng hình chóp cụt đều, nên công thức tính thể tích của khối chóp cụt đều: \(V = \frac{1}{3}h\left( {{S_1} + \sqrt {{S_1}{S_2}} + {S_2}} \right)\), với \(h\) là chiều cao và \({S_1}\), \({S_2}\) lần lượt là diện tích hai đáy của khối chóp cụt đó.
Từ đó, chiều cao của khối chì là \(h = \frac{{3.\frac{{1370}}{{113}}}}{{{1^2} + \sqrt {{1^2}{{.3}^2}} + {3^2}}} \approx 2,8{\rm{ }}\left( {cm} \right)\).
Vậy chiều cao của khối chì neo câu cá xấp xỉ \(2,8{\rm{ }}cm\).