Processing math: 100%

Giải bài 7 trang 21 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 3. Ứng dụng hình học của tích phân - SBT Toán 12 Ch


Giải bài 7 trang 21 sách bài tập toán 12 - Chân trời sáng tạo

Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = 2{x^3}), trục hoành và hai đường thẳng (x = - 1,x = 1). a) Tính diện tích của (D). b) Tính thể tích của khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).

Đề bài

Cho D là hình phẳng giới hạn bởi đồ thị của hàm số y=2x3, trục hoành và hai đường thẳng x=1,x=1.

a) Tính diện tích của D.

b) Tính thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox.

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số y=f(x), trục hoành và hai đường thẳng x=a,x=b là: S=ba|f(x)|dx.

‒ Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số y=f(x), trục hoành và hai đường thẳng x=a,x=b quay quanh trục Ox là: V=πba[f(x)]2dx.

Lời giải chi tiết

a) S=11|2x3|dx=01|2x3|dx+10|2x3|dx=|012x3dx|+|102x3dx|=|x42|01|+|x42|10|=12+12=1.

b) V=π11(2x3)2dx=π114x6dx=4π.x77|11=8π7.


Cùng chủ đề:

Giải bài 6 trang 110 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 9 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 24 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo