Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Cánh diều Bài 1. Đường thẳng và mặt phằng trong không gian - SBT


Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).

a)    Xác định giao điểm của đường thẳng \(NP\) với mặt phẳng \(\left( {SAB} \right)\).

b)    Xác định giao tuyến của mặt phẳng \(\left( {MNP} \right)\) với các mặt phẳng \(\left( {SAB} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {SBC} \right){\rm{, }}\left( {SCD} \right)\).

Phương pháp giải - Xem chi tiết

a) Để xác định giao điểm của đường thẳng \(NP\) và mặt phẳng \(\left( {SAB} \right)\), ta cần chọn một đường thẳng trong mặt phẳng \(\left( {SAB} \right)\), rồi tìm giao điểm của đường thẳng đó với đường thẳng \(NP\).

b) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.

Lời giải chi tiết

a) Xét mặt phẳng \(\left( {ABCD} \right)\), gọi \(E\) là giao điểm của \(AB\) và \(NP\).

Ta có \(\left\{ E \right\} = AB \cap NP\), mà \(NP \subset \left( {MNP} \right)\) nên \(\left\{ E \right\} = \left( {SAB} \right) \cap NP\).

b)

Giao tuyến của \(\left( {MNP} \right)\) \(\left( {SAB} \right)\) :

Ta có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAB} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Mặt khác, theo câu a, ta có \(\left\{ \begin{array}{l}E \in AB \subset \left( {SAB} \right)\\E \in NP \subset \left( {MNP} \right)\end{array} \right. \Rightarrow E \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Từ đó, giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(ME\).

Giao tuyến của \(\left( {MNP} \right)\) \(\left( {SAD} \right)\) :

Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(F\) là giao điểm của \(AD\) và \(NP\).

Vì \(F\) là giao điểm của \(AD\) và \(NP\), ta suy ra \(\left\{ \begin{array}{l}F \in AD\\F \in NP\end{array} \right.\).

Do \(AD \subset \left( {SAD} \right)\), \(NP \subset \left( {MNP} \right)\) nên ta có \(\left\{ \begin{array}{l}F \in \left( {SAD} \right)\\F \in \left( {MNP} \right)\end{array} \right. \Rightarrow F \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Hơn nữa, ta cũng có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAD} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(MF\).

Giao tuyến của \(\left( {MNP} \right)\) \(\left( {SBC} \right)\) :

Ta có \(ME\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow ME \subset \left( {SAB} \right)\).

Trên mặt phẳng \(\left( {SAB} \right)\), gọi \(\left\{ K \right\} = ME \cap SB\).

Suy ra \(\left\{ \begin{array}{l}K \in ME \subset \left( {MNP} \right)\\K \in SB \subset \left( {SBC} \right)\end{array} \right. \Rightarrow K \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}N \in \left( {MNP} \right)\\N \in BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow N \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(NK\).

Giao tuyến của \(\left( {MNP} \right)\) \(\left( {SCD} \right)\) :

Ta có \(MF\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow MF \subset \left( {SAD} \right)\).

Trên mặt phẳng \(\left( {SAD} \right)\), gọi \(\left\{ L \right\} = MF \cap SD\).

Suy ra \(\left\{ \begin{array}{l}L \in MF \subset \left( {MNP} \right)\\L \in SD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow L \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}P \in \left( {MNP} \right)\\P \in CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(LP\).


Cùng chủ đề:

Giải bài 7 trang 34 sách bài tập toán 11 - Cánh diều
Giải bài 7 trang 46 sách bài tập toán 11 - Cánh diều
Giải bài 7 trang 65 sách bài tập toán 11 - Cánh diều
Giải bài 7 trang 68 sách bài tập toán 11 - Cánh diều
Giải bài 7 trang 94 sách bài tập toán 11 - Cánh diều
Giải bài 7 trang 95 sách bài tập toán 11 - Cánh diều
Giải bài 8 trang 11 sách bài tập toán 11 - Cánh diều
Giải bài 8 trang 17 sách bài tập toán 11 - Cánh diều
Giải bài 8 trang 34 sách bài tập toán 11 - Cánh diều
Giải bài 8 trang 46 sách bài tập toán 11 - Cánh diều
Giải bài 8 trang 66 sách bài tập toán 11 - Cánh diều