Giải bài 81 trang 99 SBT toán 10 - Cánh diều
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-3 ; -1), B(3 ; 5), C(3 ; -4). Gọi G, H, I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC.
Đề bài
Trong mặt phẳng toạ độ Oxy , cho tam giác ABC có A (-3 ; -1), B (3 ; 5), C (3 ; -4). Gọi G , H , I lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC .
a) Lập phương trình các đường thẳng AB , BC , AC
b) Tìm toạ độ các điểm G , H , I
c) Tính diện tích tam giác ABC
Phương pháp giải - Xem chi tiết
a) Tìm các VTPT của các đường thẳng AB , BC , AC rồi viết PTTQ
b) Tham số hóa tọa độ các điểm G , H , I (nếu cần)
Bước 1: Tìm tọa độ trọng tâm G theo công thức \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)
Bước 2: Giải hệ PT: \(\left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\) để tìm tọa độ trực tâm H
Bước 3: Giải hệ PT: \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right.\) để tìm tọa độ tâm I
Bước 4: Tính khoảng cách từ A đến BC là chiều cao của ∆ ABC
Bước 5: Tính độ dài BC rồi tính diện tích ∆ ABC
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = (6;6),\overrightarrow {BC} = (0; - 9),\overrightarrow {AC} = (6; - 3)\)
+ Chọn \(\overrightarrow {{n_1}} = (1; - 1)\) thỏa mãn \(\overrightarrow {{n_1}} .\overrightarrow {AB} = 0\). Khi đó AB đi qua A (-3 ; -1) và nhận \(\overrightarrow {{n_1}} = (1; - 1)\) nên có PT:
x - y + 2 = 0
+ Chọn \(\overrightarrow {{n_2}} = (1;0)\) thỏa mãn \(\overrightarrow {{n_2}} .\overrightarrow {BC} = 0\). Khi đó BC đi qua B (3 ; 5) và nhận \(\overrightarrow {{n_2}} = (1;0)\) nên có PT: x – 3 = 0
+ Chọn \(\overrightarrow {{n_3}} = (1;2)\) thỏa mãn \(\overrightarrow {{n_3}} .\overrightarrow {AC} = 0\). Khi đó AC đi qua C (3 ; -4) và nhận \(\overrightarrow {{n_3}} = (1;2)\) nên có PT:
x + 2 y + 5 = 0
b) Ta có:
+ G là trọng tâm ∆ ABC nên \( \Rightarrow G(1;0)\)
+ Gọi \(H({x_H};{y_H})\) là trực tâm ∆ ABC . Ta có: \(\overrightarrow {AH} = ({x_H} + 3;{y_H} + 1),\overrightarrow {BH} = ({x_H} - 3;{y_H} - 5)\)
Khi đó\(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 9({y_H} + 1) = 0\\6({x_H} - 3) - 3({y_H} - 5)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_H} + 1 = 0\\2{x_H} - {y_H} - 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = - 1\end{array} \right.\)
\( \Rightarrow H(0; - 1)\)
+ Gọi \(I({x_I};{y_I})\) là tâm đường tròn ngoại tiếp tam giác ABC
Ta có: \(\overrightarrow {IA} = {( - 3 - {x_I}; - 1 - {y_I})^2} \Rightarrow IA = \sqrt {{{({x_I} + 3)}^2} + {{({y_I} + 1)}^2}} \Rightarrow I{A^2} = {({x_I} + 3)^2} + {({y_I} + 1)^2}\)
\(\overrightarrow {IB} = {(3 - {x_I};5 - {y_I})^2} \Rightarrow IB = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} - 5)}^2}} \Rightarrow I{B^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\)
\(\overrightarrow {IC} = {(3 - {x_I}; - 4 - {y_I})^2} \Rightarrow IC = \sqrt {{{({x_I} - 3)}^2} + {{({y_I} + 4)}^2}} \Rightarrow I{C^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\)
Khi đó \(\left\{ \begin{array}{l}IA = IB\\IA = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I{A^2} = I{C^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} - 5)^2}\\{({x_I} + 3)^2} + {({y_I} + 1)^2} = {({x_I} - 3)^2} + {({y_I} + 4)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}12{x_I} + 12{y_I} = 24\\12{x_I} - 6{y_I} = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} + {y_I} = 2\\4{x_I} - 2{y_I} = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \frac{3}{2}\\{y_I} = \frac{1}{2}\end{array} \right.\)\( \Rightarrow I\left( {\frac{3}{2};\frac{1}{2}} \right)\)
Vậy \(G(1;0),H(0; - 1),I\left( {\frac{3}{2};\frac{1}{2}} \right)\)
c) Ta có: \(d(A,BC) = \frac{{\left| { - 3 - 3} \right|}}{1} = 6\)
\(\overrightarrow {BC} = (0; - 9) \Rightarrow BC = 9\)
Diện tích tam giác ABC là: \(S = \frac{1}{2}AD.BC = \frac{1}{2}.6.9 = 27\)