Giải bài 9.26 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 2
Cho tứ giác ABCD nội tiếp đường tròn (O), hai đường chéo AC và BD cắt nhau tại điểm J. Chứng minh rằng: a) $Delta JADbacksim Delta JBC,Delta JABbacksim Delta JDC$; b) (frac{{JA}}{{JC}} = frac{{BA}}{{BC}}.frac{{DA}}{{DC}}).
Đề bài
Cho tứ giác ABCD nội tiếp đường tròn (O), hai đường chéo AC và BD cắt nhau tại điểm J. Chứng minh rằng:
a) $\Delta JAD\backsim \Delta JBC,\Delta JAB\backsim \Delta JDC$;
b) \(\frac{{JA}}{{JC}} = \frac{{BA}}{{BC}}.\frac{{DA}}{{DC}}\).
Phương pháp giải - Xem chi tiết
a) + Chứng minh \(\widehat {AJD} = \widehat {BJC}\), \(\widehat {JAD} = \widehat {JBC}\), suy ra $\Delta JAD\backsim \Delta JBC\left( g.g \right)$.
+ Chứng minh \(\widehat {AJB} = \widehat {DJC}\), \(\widehat {JAB} = \widehat {JDC}\) nên $\Delta JAB\backsim \Delta JDC\left( g.g \right)$.
b) Từ a suy ra: \(\frac{{JB}}{{JC}} = \frac{{AB}}{{DC}}\); \(\frac{{JA}}{{JB}} = \frac{{AD}}{{BC}}\) nên \(\frac{{JA}}{{JC}} = \frac{{JA}}{{JB}}.\frac{{JB}}{{JC}} = \frac{{BA}}{{BC}}.\frac{{DA}}{{DC}}\).
Lời giải chi tiết
a) Tam giác JAD và tam giác JBC có: \(\widehat {AJD} = \widehat {BJC}\) (hai góc đối đỉnh), \(\widehat {JAD} = \widehat {JBC}\) (hai góc nội tiếp đường tròn (O) cùng chắn cung nhỏ DC). Do đó, $\Delta JAD\backsim \Delta JBC\left( g.g \right)$.
Tam giác JAB và tam giác JDC có: \(\widehat {AJB} = \widehat {DJC}\) (hai góc đối đỉnh), \(\widehat {JAB} = \widehat {JDC}\) (hai góc nội tiếp đường tròn (O) cùng chắn cung nhỏ BC). Do đó, $\Delta JAB\backsim \Delta JDC\left( g.g \right)$.
b) Vì $\Delta JAB\backsim \Delta JDC$ nên \(\frac{{JB}}{{JC}} = \frac{{AB}}{{DC}}\); $\Delta JAD\backsim \Delta JBC$ nên \(\frac{{JA}}{{JB}} = \frac{{AD}}{{BC}}\).
Do đó, \(\frac{{JA}}{{JC}} = \frac{{JA}}{{JB}}.\frac{{JB}}{{JC}} = \frac{{BA}}{{BC}}.\frac{{DA}}{{DC}}\).