Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 2. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số


Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Cho tam giác (ABC) cân tại (A) nội tiếp trong đường tròn tâm (O), bán kính 1 cm. Đặt (widehat A = alpha left( {0 < alpha < pi } right)). a) Viết biểu thức tính diện tích (S) của tam giác (ABC) theo (alpha ). b) Tìm diện tích lớn nhất của tam giác (ABC).

Đề bài

Cho tam giác \(ABC\) cân tại \(A\) nội tiếp trong đường tròn tâm \(O\), bán kính 1 cm. Đặt \(\widehat A = \alpha \left( {0 < \alpha  < \pi } \right)\).

a) Viết biểu thức tính diện tích \(S\) của tam giác \(ABC\) theo \(\alpha \).

b) Tìm diện tích lớn nhất của tam giác \(ABC\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính diện tích tam giác để tính diện tích \(S\left( \alpha  \right)\), sau đó tìm giá trị lớn nhất của hàm số \(S\left( \alpha  \right)\) trên khoảng \(\left( {0;\pi } \right)\).

Lời giải chi tiết

a) Gọi \(M\) là trung điểm của \(BC\), ta có:

\(\widehat {MOC} = 2\widehat {OAC} = \widehat {BAC} = \alpha \).

Do đó: \(AM = AO + OM = 1 + \cos \alpha ,BC = 2MC = 2\sin a\).

Suy ra:

\(\begin{array}{l}S = \frac{1}{2}AM.BC = \frac{1}{2}2\sin \alpha \left( {1 + \cos \alpha } \right) = \sin \alpha \left( {1 + \cos \alpha } \right)\\ = \sin \alpha  + \sin \alpha \cos \alpha  = \sin \alpha  + \frac{1}{2}\sin 2\alpha \end{array}\)

b) Xét hàm số \(S\left( \alpha  \right) = \sin \alpha  + \frac{1}{2}\sin 2\alpha \) trên khoảng \(\left( {0;\pi } \right)\).

Ta có: \(S'\left( \alpha  \right) = \cos \alpha  + \frac{1}{2}.2\cos 2\alpha  = \cos \alpha  + \cos 2\alpha  = 2{\cos ^2}\alpha  + \cos \alpha  - 1\)

\(S'\left( \alpha  \right) = 0 \Leftrightarrow \cos \alpha  = \frac{1}{2}\) hoặc \(\cos \alpha  =  - 1\)

\(\alpha  = \frac{\pi }{3}\) hoặc \(\alpha  = \pi \) (loại)

Bảng biến thiên của hàm số trên khoảng \(\left( {0;\pi } \right)\):

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{\left( {0;\pi } \right)} S\left( \alpha  \right) = S\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{4}\).

Vậy tam giác \(ABC\) có diện tích lớn nhất bằng \(\frac{{3\sqrt 3 }}{4}\left( {c{m^2}} \right)\).


Cùng chủ đề:

Giải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 77 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo