Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài tập cuối chương 4 - SBT Toán 12 Chân trời sáng tạo


Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho \(K\) là một khoảng trên \(\mathbb{R}\); \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\); \(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\).

a) Nếu \(F\left( x \right) = G\left( x \right)\) thì \(f\left( x \right) = g\left( x \right)\).

b) Nếu \(f\left( x \right) = g\left( x \right)\) thì \(F\left( x \right) = G\left( x \right)\).

c) \(\int {f\left( x \right)dx}  = F\left( x \right) + C,C \in \mathbb{R}\).

d) \(\int {f'\left( x \right)dx}  = F\left( x \right) + C,C \in \mathbb{R}\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa nguyên hàm.

Lời giải chi tiết

\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nên ta có \(F'\left( x \right) = f\left( x \right)\).

\(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\) nên ta có \(G'\left( x \right) = g\left( x \right)\).

Nếu \(F\left( x \right) = G\left( x \right)\) thì \(F'\left( x \right) = G'\left( x \right)\) hay \(f\left( x \right) = g\left( x \right)\). Vậy a) đúng.

\(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nên ta có \(\int {f\left( x \right)dx}  = F\left( x \right) + C\).

\(G\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên \(K\) nên ta có \(\int {g\left( x \right)dx}  = G\left( x \right) + C\).

Nếu \(f\left( x \right) = g\left( x \right)\) thì \(\int {f\left( x \right)dx}  = \int {g\left( x \right)dx}  + C\) hay \(F\left( x \right) = G\left( x \right) + C\). Vậy b) sai, c) đúng.

Theo định nghĩa nguyên hàm ta có \(\int {f'\left( x \right)dx}  = f\left( x \right) + C\). Vậy d) sai.

a) Đ.

b) S.

c) Đ.

d) S.


Cùng chủ đề:

Giải bài 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 64 sách bài tập toán 12 - Chân trời sáng tạo