Giải bài 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài tập cuối chương 2 - SBT Toán 12 Chân trời sáng tạo


Giải bài 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo

Cho hai vectơ (overrightarrow u ,overrightarrow v ) thoả mãn (left| {overrightarrow u } right| = 2,left| {overrightarrow v } right| = 1) và (left( {overrightarrow u ,overrightarrow v } right) = {60^ circ }). Tính góc giữa hai vectơ (overrightarrow v ) và (overrightarrow u - overrightarrow v ).

Đề bài

Cho hai vectơ \(\overrightarrow u ,\overrightarrow v \) thoả mãn \(\left| {\overrightarrow u } \right| = 2,\left| {\overrightarrow v } \right| = 1\) và \(\left( {\overrightarrow u ,\overrightarrow v } \right) = {60^ \circ }\). Tính góc giữa hai vectơ \(\overrightarrow v \) và \(\overrightarrow u  - \overrightarrow v \).

Phương pháp giải - Xem chi tiết

Sử dụng tích vô hướng của hai vectơ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = 2.1.\cos {60^ \circ } = 1\\{\left( {\overrightarrow u  - \overrightarrow v } \right)^2} = {\left| {\overrightarrow u } \right|^2} - 2.\overrightarrow u .\overrightarrow v  + {\left| {\overrightarrow v } \right|^2} = {2^2} - 2.1 + {1^2} = 3 \Rightarrow \left| {\overrightarrow u  - \overrightarrow v } \right| = \sqrt 3 \\\cos \left( {\overrightarrow v ,\overrightarrow u  - \overrightarrow v } \right) = \frac{{\overrightarrow v .\left( {\overrightarrow u  - \overrightarrow v } \right)}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow u  - \overrightarrow v } \right|}} = \frac{{\overrightarrow u .\overrightarrow v  - {{\overrightarrow v }^2}}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow u  - \overrightarrow v } \right|}} = \frac{{1 - {1^2}}}{{1.\sqrt 3 }} = 0 \Rightarrow \left( {\overrightarrow v ,\overrightarrow u  - \overrightarrow v } \right) = {90^ \circ }\end{array}\)


Cùng chủ đề:

Giải bài 8 trang 62 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 64 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 65 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 76 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 77 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 9 trang 24 sách bài tập toán 12 - Chân trời sáng tạo