Giải bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là sai? A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho. B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho. C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho. D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Đề bài
Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai? A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho. B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho. C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho. D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).
Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)
Lời giải chi tiết
Vì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = - 1;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 7\) nên đường thẳng \(x = 1\) không phải là tiệm cận đứng của đồ thị hàm số đã cho.
Chọn D