Giải bài tập 2.2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=2,AD=3 và AA′=4. Tính độ dài của các vectơ →BB′,→BD và →BD′.
Đề bài
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=2,AD=3 và AA′=4. Tính độ dài của các vectơ →BB′,→BD và →BD′.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về độ dài vectơ để tính: Độ dài của vectơ trong không gian là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. Độ dài của vectơ →a được kí hiệu là |→a|.
Lời giải chi tiết
Vì B’BAA’ là hình chữ nhật nên BB′=AA′=DD′=4⇒|→BB′|=4
Vì tứ giác ABCD là hình chữ nhật nên tam giác BAD vuông tại A.
Do đó, BD=√AB2+AD2=√22+32=√13 (định lí Pythagore), suy ra: |→BD|=√13
Vì BB’D’D là hình chữ nhật nên tam giác DD’B vuông tại D
Theo định lí Pythagore ta có: BD′=√BD2+DD′2=√13+42=√29⇒|→BD′|=√29
Cùng chủ đề:
Giải bài tập 2. 2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức