Giải bài tập 2. 39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Đề bài

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Phương pháp giải - Xem chi tiết

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Lời giải chi tiết

Ta có: O(0; 0; 0)

Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {AA'}  = \overrightarrow {OO'}  \Rightarrow \left\{ \begin{array}{l}{x_{A'}} - {x_A} = {x_{O'}} - {x_O}\\{y_{A'}} - {y_A} = {y_{O'}} - {y_O}\\{z_{A'}} - {z_A} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_{O'}} - {x_O} + {x_A} = 3\\{y_{A'}} = {y_{O'}} - {y_O} + {y_A} = 1\\{z_{A'}} = {z_{O'}} - {z_O} + {z_A} = 3\end{array} \right. \Rightarrow A'\left( {3;1;3} \right)\)

\(\overrightarrow {CC'}  = \overrightarrow {OO'}  \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - {x_C} = {x_{O'}} - {x_O}\\{y_{C'}} - {y_C} = {y_{O'}} - {y_O}\\{z_{C'}} - {z_C} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{C'}} = {x_{O'}} - {x_O} + {x_C} = 0\\{y_{C'}} = {y_{O'}} - {y_O} + {y_C} = 0\\{z_{C'}} = {z_{O'}} - {z_O} + {z_C} = 5\end{array} \right. \Rightarrow C'\left( {0;0;5} \right)\)

Vì ABCO là hình bình hành nên \(\overrightarrow {CB}  = \overrightarrow {OA}  \Rightarrow \left\{ \begin{array}{l}{x_B} + 1 = 2\\{y_B} - 2 = 3\\{z_B} - 3 = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 5\\{z_B} = 4\end{array} \right. \Rightarrow B\left( {1;5;4} \right)\)

Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {BB'}  = \overrightarrow {OO'}  \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 1 = 1\\{y_{B'}} - 5 =  - 2\\{z_{B'}} - 4 = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{B'}} = 2\\{y_{B'}} = 3\\{z_{B'}} = 6\end{array} \right. \Rightarrow B'\left( {2;3;6} \right)\)


Cùng chủ đề:

Giải bài tập 2. 34 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 36 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 37 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 38 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 41 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 2. 42 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 3. 1 trang 78 SGK Toán 12 tập 1 - Kết nối tri thức