Giải bài tập 4. 18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

Ở \({45^^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình: \({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\) với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L. a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\). b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thờ

Đề bài

Ở \({45^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình:

\({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\)

với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) =  - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L.

a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\).

b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thời điểm \(a\) giây đến thời điểm \(b\) giây (\(a < b\)) được cho bởi công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

Tính nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây.

Phương pháp giải - Xem chi tiết

a)

- Sử dụng công thức \(c'(t) =  - 0,0005c(t)\), suy ra \(y'(t)\) từ định nghĩa của hàm \(y(t) = \ln c(t)\)

- Từ \(y'(t)\), tính tích phân để tìm \(y(t)\).

b)

- Tính nồng độ trung bình bằng cách sử dụng công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

- Sử dụng hàm \(c(t)\) đã biết từ câu a để tính tích phân.

Lời giải chi tiết

a)

- Ta có:

\(y(t) = \ln c(t)\)

Lấy đạo hàm của \(y(t)\):

\(y'(t) = \frac{d}{{dt}}[\ln c(t)] = \frac{{c'(t)}}{{c(t)}}\)

- Theo đề bài, \(c'(t) =  - 0,0005c(t)\), do đó:

\(y'(t) = \frac{{ - 0,0005c(t)}}{{c(t)}} =  - 0,0005\)

- Tính \(y(t)\) bằng cách tích phân \(y'(t)\):

\(y(t) = \int {y'} (t){\mkern 1mu} dt = \int  -  0,0005{\mkern 1mu} dt =  - 0,0005t + C\)

- Khi \(t = 0\), ta có \(c(0) = 0,05{\mkern 1mu} {\rm{mol/L}}\), do đó:

\(y(0) = \ln c(0) = \ln 0,05\)

Vậy, \(C = \ln 0,05\).

- Kết luận:

\(y(t) =  - 0,0005t + \ln 0,05\)

b)

- Nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây là:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt = \frac{1}{{20 - 10}}\int_{10}^{20} c (t){\mkern 1mu} dt = \frac{1}{{10}}\int_{10}^{20} c (t){\mkern 1mu} dt\)

- Từ câu a, ta biết \(c(t) = {e^{y(t)}} = {e^{ - 0,0005t + \ln 0,05}} = 0,05{e^{ - 0,0005t}}\).

- Tính tích phân:

\(\int_{10}^{20} 0 ,05{e^{ - 0,0005t}}{\mkern 1mu} dt = 0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt\)

- Tích phân của \({e^{ - 0,0005t}}\) là:

\(\int {{e^{ - 0,0005t}}} {\mkern 1mu} dt = \frac{{{e^{ - 0,0005t}}}}{{ - 0,0005}} =  - 2000{e^{ - 0,0005t}}\)

- Do đó:

\(0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt = 0,05\left( { - 2000{e^{ - 0,0005t}}|_{10}^{20}} \right)\)

\( =  - 100\left( {{e^{ - 0,0005 \times 20}} - {e^{ - 0,0005 \times 10}}} \right)\)

\( =  - 100\left( {{e^{ - 0,01}} - {e^{ - 0,005}}} \right)\)

- Sử dụng giá trị gần đúng:

\({e^{ - 0,01}} \approx 0,99005,\quad {e^{ - 0,005}} \approx 0,99501\)

- Khi đó:

\( - 100\left( {0,99005 - 0,99501} \right) =  - 100 \times ( - 0,00496) = 0,496\)

- Nồng độ trung bình là:

\(\frac{1}{{10}} \times 0,496 = 0,0496{\mkern 1mu} {\rm{mol/L}}\)


Cùng chủ đề:

Giải bài tập 4. 13 trang 20 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 14 trang 20 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 16 trang 20 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 17 trang 21 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 19 trang 31 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 20 trang 31 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 21 trang 31 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 22 trang 31 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 23 trang 32 SGK Toán 12 tập 2 - Cùng khám phá