Loading [MathJax]/jax/output/CommonHTML/jax.js

Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho hình chóp S.ABCD. Gọi I là trọng tâm của tam giác ABC và J là trọng tâm tam giác ADC. Chứng minh rằng (2overrightarrow {SA} + overrightarrow {SB} + 2overrightarrow {SC} + overrightarrow {SD} = 3(overrightarrow {SI} + overrightarrow {SJ} ))

Đề bài

Cho hình chóp S.ABCD. Gọi I là trọng tâm của tam giác ABC và J là trọng tâm tam giác ADC. Chứng minh rằng 2SA+SB+2SC+SD=3(SI+SJ).

Phương pháp giải - Xem chi tiết

Áp dụng tính chất trọng tâm của tam giác và quy tắc 3 điểm.

Lời giải chi tiết

Xét S.ABC: SA+SB+SC=SI+IA+SI+IB+SI+IC=3SI+(IA+IB+IC)

Vì I là trọng tâm tam giác ABC nên IA+IB+IC=0, suy ra SA+SB+SC=3SI

Xét S.ACD: SA+SC+SD=SJ+JA+SJ+JC+SJ+JD=3SJ+(JA+JC+JD)

Vì J là trọng tâm tam giác ABC nên JA+JC+JD=0, suy ra SA+SC+SD=3SJ

Ta có: SA+SB+SC+SA+SC+SD=3SI+3SJ2SA+SB+2SC+SD=3(SI+SJ)


Cùng chủ đề:

Giải bài tập 4 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo