Giải bài tập 4 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Cho ba điểm A(1; 3; 5), B(2; 0; 1), C(0; 9; 0). Toạ độ trọng tâm G của tam giác ABC là A. G(3; 12; 6). B. G(1; 5; 2). C. G(1; 0; 5). D. G(1; 4; 2).
Đề bài
Cho ba điểm A(1; 3; 5), B(2; 0; 1), C(0; 9; 0). Toạ độ trọng tâm G của tam giác ABC là
A. G(3; 12; 6).
B. G(1; 5; 2).
C. G(1; 0; 5).
D. G(1; 4; 2).
Phương pháp giải - Xem chi tiết
Cho tam giác ABC có \(A({a_1};{a_2};{a_3})\), \(B({b_1};{b_2};{b_3})\), \(C({c_1};{c_2};{c_3})\), ta có \(G(\frac{{{a_1} + {b_1} + {c_1}}}{3};\frac{{{a_2} + {b_2} + {c_2}}}{3};\frac{{{a_3} + {b_3} + {c_3}}}{3})\) là trọng tâm của tam giác ABC
Lời giải chi tiết
Chọn D
\(G(\frac{{1 + 2 + 0}}{3};\frac{{3 + 0 + 9}}{3};\frac{{5 + 1 + 0}}{3})\) hay G(1;4;2)
Cùng chủ đề:
Giải bài tập 4 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo