Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

Trong trò chơi mô phỏng bắn súng 3D trong không gian (Oxyz), một xạ thủ đang ngắm với toạ độ khe ngắm và đầu ruồi lần lượt là (Mleft( {3;3;1,5} right)), (Nleft( {3;4;1,5} right)). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng (MN)).

Đề bài

Trong trò chơi mô phỏng bắn súng 3D trong không gian \(Oxyz\), một xạ thủ đang ngắm với toạ độ khe ngắm và đầu ruồi lần lượt là \(M\left( {3;3;1,5} \right)\), \(N\left( {3;4;1,5} \right)\). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng \(MN\)).

Phương pháp giải - Xem chi tiết

Đường ngắm bắn \(d\) của xạ thủ đi qua hai điểm \(M\) và \(N\) nên nó nhận \(\overrightarrow {MN} \) là một vectơ chỉ phương. Từ đó viết phương trình tham số của đường ngắm bắn \(d\) đi qua \(M\) và có vectơ chỉ phương là \(\overrightarrow {MN} \).

Lời giải chi tiết

Đường ngắm bắn \(d\) của xạ thủ đi qua hai điểm \(M\left( {3;3;1,5} \right)\) và \(N\left( {3;4;1,5} \right)\) nên nó nhận \(\overrightarrow {MN}  = \left( {0;1;0} \right)\) là một vectơ chỉ phương.

Suy ra phương trình tham số của đường ngắm bắn \(d\) là \(\left\{ \begin{array}{l}x = 3 + 0t\\y = 3 + 1t\\z = 1,5 + 0t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 3\\y = 3 + t\\z = 1,5\end{array} \right.\)


Cùng chủ đề:

Giải bài tập 4 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 74 SGK Toán 12 tập 1 - Chân trời sáng tạo