Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giá trị của (intlimits_0^2 {left| {{x^2} - x} right|dx} ) bằng: A. (frac{2}{3}) B. (1) C. (frac{1}{3}) D. (2)

Đề bài

Giá trị của \(\int\limits_0^2 {\left| {{x^2} - x} \right|dx} \) bằng:

A. \(\frac{2}{3}\)

B. \(1\)

C. \(\frac{1}{3}\)

D. \(2\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của tích phân để phá dấu giá trị tuyệt đối và tính giá trị của tích phân trên.

Lời giải chi tiết

Ta có \({x^2} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\).

Như vậy,

\(\int\limits_0^2 {\left| {{x^2} - x} \right|dx}  = \int\limits_0^1 {\left| {{x^2} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^2} - x} \right|dx}  = \left| {\int\limits_0^1 {\left( {{x^2} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^2} - x} \right)dx} } \right|\)

\( = \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right| = \left| {\frac{{ - 1}}{6} - 0} \right| + \left| {\frac{2}{3} - \left( { - \frac{1}{6}} \right)} \right| = 1\)

Vậy đáp án đúng là B.


Cùng chủ đề:

Giải bài tập 7 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 7 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 7 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 7 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 8 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 8 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 8 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 8 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 8 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo