Giải bài tập 8 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tính góc giữa hai đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 5}}{4} = \frac{{z - 7}}{2}\) và \(d':\frac{{x - 1}}{3} = \frac{{y + 7}}{3} = \frac{{z - 12}}{6}\).
Đề bài
Tính góc giữa hai đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 5}}{4} = \frac{{z - 7}}{2}\) và \(d':\frac{{x - 1}}{3} = \frac{{y + 7}}{3} = \frac{{z - 12}}{6}\).
Phương pháp giải - Xem chi tiết
Chỉ ra các vectơ chỉ phương \(\vec a\) và \(\vec a'\) lần lượt của hai đường thẳng \(d\) và \(d'\), sau đó sử dụng công thức \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right|\).
Lời giải chi tiết
Đường thẳng \(d\) có vectơ chỉ phương là \(\vec a = \left( {2;4;2} \right)\).
Đường thẳng \(d'\) có vectơ chỉ phương là \(\vec a' = \left( {3;3;6} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\vec a,\vec a'} \right)} \right| = \frac{{\left| {2.3 + 4.3 + 2.6} \right|}}{{\sqrt {{2^2} + {4^2} + {2^2}} .\sqrt {{3^2} + {3^2} + {6^2}} }} = \frac{5}{6}\).
Suy ra \(\left( {d,d'} \right) \approx {33^o}33'\).