Chứng minh rằng với mọi số tự nhiên \(n \ge 1\), ta có:
Đặt ({S_n} = frac{1}{{1.3}} + frac{1}{{3.5}} + ... + frac{1}{{(2n - 1)(2n + 1)}})
Chứng minh rằng với mọi số tự nhiên n, ta có \({10^{2n + 1}} + 1\) chia hết cho 11.
Chứng minh rằng với mọi số tự nhiên \(n \ge 2\), ta có \({5^n} \ge {3^n} + {4^n}\)
a) Khai triển \({(1 + x)^{10}}\) b) So sánh \({\left( {1,1} \right)^{10}}\) và 2.
Tìm hệ số của \({x^9}\) trong khai triển thành đa thức của \({\left( {2x - 3} \right)^{11}}\)
Khai triển đa thức \({\left( {1 + 2x} \right)^{12}}\) thành dạng \({a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{12}}{x^{12}}\).
Chứng minh rằng
Tìm giá trị lớn nhất trong các giá trị
Tìm số hạng lớn nhất của khai triển \({(p + q)^n}\) với \(p > 0,q > 0,p + q = 1\)