Processing math: 100%

Giải mục 2 trang 77, 78 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải mục 2 trang 77, 78 SGK Toán 12 tập 1 - Kết nối tri thức

Khoảng tứ phân vị

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 77 SGK Toán 12 Kết nối tri thức

Trong tình huống mở đầu , gọi y1,y2,...,y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 (mẫu số liệu gốc).

a) Có thể tính chính xác khoảng tứ phân vị của mẫu số liệu gốc hay không?

b) Tìm tứ phân vị thứ nhất Q1 và thứ phân vị thứ ba Q3 cho mẫu số liệu ghép nhóm.

c) Hãy đưa ra một giá trị xấp xỉ cho khoảng tứ phân vị của mẫu số liệu gốc.

Phương pháp giải:

+ Sử dụng kiến thức về tính chất về nhóm chứa tứ phân vị của mẫu số liệu để tính: Ta có thể xác định nhóm chứa tứ phân vị thứ r nhờ tính chất: có khoảng (r.n4) giá trị nhỏ hơn tứ phân vị này.

+ Sử dụng kiến thức về tứ phân vị của mẫu số liệu ghép nhóm để tính: Tứ phân vị thứ r là Qr=ap+r.n4(m1+...+mp1)mp.(ap+1ap), trong đó [ap;ap+1) là nhóm chứa tứ phân vị thứ r với r=1,2,3.

Lời giải chi tiết:

a) Không thể tính chính xác khoảng tứ phân vị của mẫu số liệu gốc.

b) Cỡ mẫu n=30. Giả sử y1,y2,...,y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

n4=304=7,52+3<7,5<2+3+4 nên nhóm chứa tứ phân vị thứ nhất là nhóm [32;34) và tứ phân vị thứ nhất là: Q1=32+304(2+3)4.(3432)=33,25

3n4=3.304=22,52+3+4+11<22,5<2+3+4+11+8 nên nhóm chứa tứ phân vị thứ ba là nhóm [36;38) và tứ phân vị thứ ba là: Q3=36+3.304(2+3+4+11)8.(3836)=36,625

c) Một giá trị xấp xỉ cho khoảng tứ phân vị của mẫu số liệu gốc là: 36,62533,25=3,375

LT2

Trả lời câu hỏi Luyện tập 2 trang 78 SGK Toán 12 Kết nối tri thức

Một người ghi lại thời gian đàm thoại của một số cuộc gọi cho kết quả như bảng sau:

Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

Phương pháp giải:

+ Sử dụng kiến thức về tính chất về nhóm chứa tứ phân vị của mẫu số liệu để tính: Ta có thể xác định nhóm chứa tứ phân vị thứ r nhờ tính chất: có khoảng (r.n4) giá trị nhỏ hơn tứ phân vị này.

+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba Q3 và tứ phân vị thứ nhất Q1 của mẫu số liệu đó, tức là ΔQ=Q3Q1.

Lời giải chi tiết:

Hiệu chỉnh lại bảng số liệu ta có:

Cỡ mẫu n=80. Giả sử x1,x2,...,x80 là thời gian đàm thoại của 80 cuộc gọi và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

n4=208<20<8+17 nên nhóm chứa tứ phân vị thứ nhất là nhóm [1;2) và tứ phân vị thứ nhất là: Q1=1+804817.1=2917

3n4=608+17+25<20<8+17+25+20 nên nhóm chứa tứ phân vị thứ ba là nhóm [3;4) và tứ phân vị thứ ba là: Q3=3+3.804(8+17+25)20.1=3,5

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: 3,52917=6134

VD

Trả lời câu hỏi Vận dụng trang 78 SGK Toán 12 Kết nối tri thức

Hãy giải bài toán trong tình huống mở đầu bằng cách sử dụng khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm.

Phương pháp giải:

Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:

Cho mẫu số liệu ghép nhóm:

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R=ak+1a1.

+ Sử dụng kiến thức về tính chất về nhóm chứa tứ phân vị của mẫu số liệu để tính: Ta có thể xác định nhóm chứa tứ phân vị thứ r nhờ tính chất: có khoảng (r.n4) giá trị nhỏ hơn tứ phân vị này.

+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba Q3 và tứ phân vị thứ nhất Q1 của mẫu số liệu đó, tức là ΔQ=Q3Q1.

Lời giải chi tiết:

Năm 2021: Khoảng biến thiên của nhiệt độ là: R1=4030=10

Cỡ mẫu n=30. Giả sử y1,y2,...,y30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2021 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

n4=304=7,52<7,5<2+8 nên tứ phân vị thứ nhất thuộc nhóm [32;34) và tứ phân vị thứ nhất là: Q1=32+30428.2=33,375

3n4=3.304=22,52+8+5+6<22,5,5<2+8+5+6+9 nên tứ phân vị thứ ba thuộc nhóm [38;40) và tứ phân vị thứ ba là: Q3=38+3.304(2+8+5+6)9.2=1153

Khoảng biến thiên của mẫu số liệu ghép nhóm là: ΔQ1=115333,375=11924

Năm 2022: Khoảng biến thiên của nhiệt độ là: R2=4028=12

Cỡ mẫu n=30. Giả sử z1,z2,...,z30 là nhiệt độ cao nhất trong ngày của 30 ngày tháng Sáu năm 2022 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

n4=304=7,52+3<7,5<2+3+4 nên nhóm chứa tứ phân vị thứ nhất là nhóm [32;34) và tứ phân vị thứ nhất là: Q1=32+304(2+3)4.(3432)=33,25

3n4=3.304=22,52+3+4+11<22,5<2+3+4+11+8 nên nhóm chứa tứ phân vị thứ ba là nhóm [36;38) và tứ phân vị thứ ba là: Q3=36+3.304(2+3+4+11)8.(3836)=36,625

Khoảng biến thiên của mẫu số liệu ghép nhóm là: ΔQ2=36,62533,25=3,375

Theo khoảng biến thiên: Vì R2>R1 nên nhiệt độ cao nhất trong ngày vào tháng 6 năm 2022 biến đổi nhiều hơn nhiệt độ cao nhất trong ngày vào tháng 6 năm 2021.

Theo khoảng tứ phân vị: Vì ΔQ1>ΔQ2 nên nhiệt độ cao nhất trong ngày vào tháng 6 năm 2021 biến đổi nhiều hơn nhiệt độ cao nhất trong ngày vào tháng 6 năm 2022.


Cùng chủ đề:

Giải mục 2 trang 51 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 2 trang 68,69,70 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 2 trang 69, 70 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 2 trang 75,76,77 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 2 trang 77, 78 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 2 trang 82,83,84 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 2 trang 95 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 3 trang 8,9,10 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 3 trang 23, 24 SGK Toán 12 tập 1 - Kết nối tri thức
Giải mục 3 trang 28, 29, 30 SGK Toán 12 tập 1 - Kết nối tri thức