Giải mục 2 trang 95, 96, 97 SGK Toán 11 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 2. Biến cố hợp và quy tắc cộng xác suất Toán 11 Châ


Giải mục 2 trang 95, 96, 97 SGK Toán 11 tập 2 - Chân trời sáng tạo

Cho hai biến cố xung khắc \(A\) và \(B\).

Hoạt động 2

Cho hai biến cố xung khắc \(A\) và \(B\). Có 5 kết quả thuận lợi cho biến cố \(A\) và 12 kết quả thuận lợi cho biến cố \(B\). Hãy so sánh \(P\left( {A \cup B} \right)\) với \(P\left( A \right) + P\left( B \right)\).

Phương pháp giải:

Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}}\).

Lời giải chi tiết:

Số kết quả thuận lợi cho biến cố \(A \cup B\) là \(5 + 12 = 17\).

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{n\left( \Omega \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega\right)}} = \frac{{12}}{{n\left( \Omega\right)}};P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega\right)}} = \frac{{17}}{{n\left( \Omega\right)}}\)

\( \Rightarrow P\left( A \right) + P\left( B \right) = P\left( {A \cup B} \right)\)

Thực hành 2

Hãy trả lời câu hỏi ở Hoạt động mở đầu.

Phương pháp giải:

Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải chi tiết:

Gọi \(A\) là biến cố “Hạt giống thứ nhất nảy mầm”, \(B\) là biến cố “Hạt giống thứ hai nảy mầm”.

\(P\left( A \right) = P\left( B \right) = 0,8 \Rightarrow P\left( {\bar A} \right) = P\left( {\bar B} \right) = 1 - 0,8 = 0,2\)

Xác suất để có đúng 1 trong 2 hạt giống đó nảy mầm là:

\(P\left( {A\bar B} \right) + P\left( {\bar AB} \right) = P\left( A \right).P\left( {\bar B} \right) + P\left( {\bar A} \right).P\left( B \right) = 0,8.0,2 + 0,2.0,8 = 0,32\)

Hoạt động 3

Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Tính xác suất của biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”.

Phương pháp giải:

Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).

Lời giải chi tiết:

Gọi \(A\) là biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”

Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá có 52 cách \( \Rightarrow n\left( \Omega \right) = 52\)

Số lá bài có màu đỏ hoặc có số chia hết cho 5 là 30 lá \( \Rightarrow n\left( A \right) = 30\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{30}}{{52}} = \frac{{15}}{{26}}\)

Thực hành 3

Cho hai biến cố \(A\) và \(B\) độc lập với nhau. Biết \(P\left( A \right) = 0,9\) và \(P\left( B \right) = 0,6\). Hãy tính xác suất của biến cố \(A \cup B\).

Phương pháp giải:

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết:

Vì hai biến cố \(A\) và \(B\) độc lập với nhau nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,9.0,6 = 0,54\).

Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,9 + 0,6 - 0,54 = 0,96\).

Vận dụng

Khảo sát một trường trung học phổ thông, người ta thấy có 20% học sinh thuận tay trái và 35% học sinh bị cận thị. Giả sử đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không. Gặp ngẫu nhiên một học sinh của trường. Tính xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái.

Phương pháp giải:

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết:

Gọi \(A\) là biến cố “Học sinh thuận tay trái”, \(B\) là biến cố “Học sinh bị cận thị”.

Vậy \(A \cup B\) là biến cố “Học sinh bị cận thị hoặc thuận tay trái”

Ta có: \(P\left( A \right) = 0,2;P\left( B \right) = 0,35\).

Vì đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không nên \(A\) và \(B\) độc lập với nhau. Do đó \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2.0,35 = 0,07\).

Vậy xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái là:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,2 + 0,35 - 0,07 = 0,48\).


Cùng chủ đề:

Giải mục 2 trang 76 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 82 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 84, 85 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 89, 90 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 95, 96, 97 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 102, 103, 104, 105 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 108, 109 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 114, 115 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 122, 123, 124 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 132, 133 SGK Toán 11 tập 1 - Chân trời sáng tạo