Giải mục 5 trang 38 SGK Toán 11 tập 1 - Cánh Diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài 4. Phương trình lượng giác cơ bản Toán 11 Cánh diều


Giải mục 5 trang 38 SGK Toán 11 tập 1 - Cánh Diều

Quan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = m (Hình 37)

HĐ 6

Quan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = -1 (Hình 37)

a)     Từ hoành độ giao điểm của đồ thị hàm số y = cotx và đường thẳng y = m trên khoảng \(\left( {0;\pi } \right)\), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.

b)     Có nhận xét gì về nghiệm của phương trình cotx = -1?

Phương pháp giải:

Dựa vào phương trình lượng giác của sinx và cosx để làm bài:

Lời giải chi tiết:

a)     Do hoành độ giao điểm nằm trên khoảng \(\left( {0;\pi } \right)\) nên:  \(\cot x = m \Leftrightarrow \cot x = \cot \alpha  \Leftrightarrow x = \alpha  + k\pi \)

b)     Nhận xét: trên khoảng \(\left( {0;\pi } \right)\), với mọi \(m \in \mathbb{R}\) ta luôn có \(x = \alpha  + k\pi \)

LT - VD 8

a) Giải phương trình \(\cot x = 1\)

b) Tìm góc lượng giác x sao cho \(\cot x = \cot \left( { - {{83}^ \circ }} \right)\)

Phương pháp giải:

Sử dụng công thức tổng quát để giải phương trình cot

Lời giải chi tiết:

a) \(\cot x = 1 \Leftrightarrow \cot x = \cot \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \)

b) \(\cot x = \cot \left( { - {{83}^ \circ }} \right) \Leftrightarrow x =  - {83^ \circ } + k{.180^ \circ }\)


Cùng chủ đề:

Giải mục 4 trang 83, 84 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 4 trang 91, 92, 93 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 4 trang 102, 103 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 5 trang 12 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 5 trang 29, 30 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 5 trang 38 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 5 trang 85 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 5 trang 103, 104 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 6 trang 10, 105, 106 SGK Toán 11 tập 2 - Cánh Diều
Giải mục 6 trang 39 SGK Toán 11 tập 1 - Cánh Diều
Giải mục 6 trang 87 SGK Toán 11 tập 2 - Cánh Diều