- Bài 7. Các khái niệm mở đầu - SBT Toán 10 KNTT
- Bài 8. Tổng và hiệu của hai vectơ - SBT Toán 10 KNTT
- Bài 9. Tích của một vectơ với một số - SBT Toán 10 KNTT
- Bài 10. Vectơ trong mặt phẳng tọa độ - SBT Toán 10 KNTT
- Bài 11. Tích vô hướng của hai vectơ - SBT Toán 10 KNTT
- Bài tập cuối chương IV - SBT Toán 10 KNTT
Cho hình bình hành ABCD tâm O. Xét các vectơ có hai điểm mút lấy từ các điểm A,B,C,D và O.
Cho tam giác đều ABC có độ dài cạnh bằng 1.
Trong mặt phẳng tọa độ Oxy cho ba điểm M(4;0),N(5;2) và P(2;3). Tìm tọa độ các đỉnh của tam giác ABC, biết M,N,P theo thứ tự là trung điểm các cạnh BC,CA,AB.
Cho tam giác ABC. Gọi D,E tương ứng là trung điểm của BC,CA.
Cho hai vectơ không cùng phương. Chứng minh rằng
Cho tam giác \(ABC\). Gọi \(M\) là trung điểm của cạnh \(BC\) và \(G\) là trọng tâm của tam giác. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?
Cho đoạn thẳng AC và B là một điểm nằm giữa A,C. Trong các khẳng định sau, khẳng định nào là một khẳng định đúng?
a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.
Trong mặt phẳng tọa độ Oxy cho ba điểm A(2; - 1),B(1;4) và C(7;0).
Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau
a) Chứng minh rằng O là trung điểm của MN.
Cho trước hai vectơ không cùng hướng
Cho hình bình hành ABCD tâm O. Gọi K,L,M,N tướng ứng là trung điểm các cạnh AB,BC,CD,DA.
a) AM vuông góc với DE. b) BE vuông góc với CD. c) Tam giác MNP là một tam giác vuông cân
Trong mặt phẳng tọa độ Oxy cho hai điểm M( - 2;1) và N(4;5).
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Cho tứ giác ABCD
Chứng minh rằng có ít nhất hai vectơ trong chúng có cùng hướng
Cho hình thoi ABCD có độ dài các cạnh bằng 1
a) Tính tích vô hướng b) Tính số đo của góc giữa hai vectơ