Cho hàm số (y = fleft( x right) = frac{{{x^2} + 3x - 10}}{{x - 2}}). Đồ thị hàm số (fleft( x right)) có tiệm cận đứng không?
Tìm các đường tiệm cận của đồ thị các hàm số sau: a) (y = frac{{x + 1}}{{2x - 3}}); b) (y = frac{{3x - 1}}{{x + 2}}).
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau: a) (y = frac{{{x^2} - x - 5}}{{x - 2}}); b) (y = frac{{3{x^2} + 8x - 2}}{{x + 3}}).
Cho hàm số (y = fleft( x right)) có bảng biến thiên như sau: Hãy tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho.
Cho hàm số (y = fleft( x right)) có bảng biến thiên như sau:
Cho hàm số (y = frac{{x + 1}}{{x - 1}}) có đồ thị (C). Tính tích khoảng cách từ một điểm tùy ý thuộc (C) đến hai đường tiệm cận của nó.
Gọi (I) là giao điểm giữa tiệm cận đứng và tiệm cận ngang của đồ thị hàm số (y = frac{{2x + 3}}{{x - 2}}). Chọn điểm (Kleft( {3;5} right)), tính hệ số góc của đường thẳng đi qua (I) và (K).
Cho hàm số (y = fleft( x right) = frac{{sqrt {{x^2} + 3} }}{{x - 1}}) có đồ thị như hình vẽ sau: Hãy tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho.
Cho hàm số (y = fleft( x right) = frac{{x + 2}}{{x - 3}}) có đồ thị (left( C right)). Gọi tổng khoảng cách từ một điểm (left( {x;y} right) in left( C right)), với (x > 3) tới hai đường tiệm cận của (left( C right)) là (gleft( x right)). Tìm các đường tiệm cận của đồ thị hàm số (y = gleft( x right)).
Một bình chứa (200) ml dung dịch muối với nồng độ (5) mg/ml. a) Tính nồng độ dung dịch muối trong bình sau khi thêm vào (x) ml dung dịch muối với nồng độ (10) mg/ml. b) Phải thêm bao nhiêu mililít vào bình để có dung dịch muối với nồng độ (9) mg/ml? Nồng độ muối trong bình có thể đạt đến (10) mg/ml không?