Dùng tính chất cơ bản của phân thức, chứng minh
Sử dụng tính chất cơ bản của phân thức và quy tắc đổi dấu, viết phân thức
Rút gọn phân thức (frac{{x - {x^2}}}{{5{x^2} - 5}}) rồi tìm đa thức A trong đẳng thức (frac{{x - {x^2}}}{{5{x^2} - 5}} = frac{x}{A}).
Rút gọn phân thức \(\frac{{2x + 2xy + y + {y^2}}}{{{y^3} + 3{y^2} + 3y + 1}}\)
Rút gọn rồi tính giá trị của các phân thức sau:
Quy đồng mẫu thức các phân thức sau:
Tìm mẫu thức chung của ba phân thức sau: \(\frac{1}{{{x^2} - x}};\frac{x}{{1 - {x^3}}}\) và \(\frac{{ - 1}}{{{x^2} + x + 1}}\)
Quy đồng mẫu thức các phân thức sau: a) \(\frac{1}{{{x^2}y}};\frac{1}{{{y^2}z}}\) và \(\frac{1}{{{z^2}x}}\)
Cho các số x, y, z thỏa mãn \(x + y + z = 0\) và \(x \ne 0;y \ne z.\) Hãy rút gọn phân thức \(\frac{x}{{{y^2} - {z^2}}}\)