1. Phương trình bậc hai một ẩn Phương trình dạng \(a{x^2} + bx + c = 0\) với a, b, c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số là x) hay còn nói gọn là phương trình bậc hai.
Có nhận xét gì về các cạnh và góc của mỗi đa giác sau?
Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó: a) 2x – x2 = 0; b) \({x^2} - 6x + 9 = \frac{1}{2}\)
Biến đổi phương trình tổng quát ax2 + bx + c = 0 (a\( \ne \)0) theo các bước tương tự ví dụ 3, ta có: \(\begin{array}{l}a{x^2} + bx + c = 0\\a{x^2} + bx = - c\\{x^2} + \frac{b}{a}x = \frac{{ - c}}{a}\\{x^2} + 2.x.\frac{b}{{2a}} + {\left( {\frac{b}{{2a}}} \right)^2} = \frac{{ - c}}{a} + {\left( {\frac{b}{{2a}}} \right)^2}\\{\left( {x + \frac{b}{{2a}}} \right)^2} = \frac{{{b^2} - 4ac}}{{4{a^2}}}.\end{array}\) Đặt \(\Delta = {b^2} - 4ac\) và gọi là biệt thức của phương trình (\(\Delta \) là một
Dùng máy tính cầm tay tính nghiệm (nếu có) của các phương trình sau (làm tròn kết quả đến hàng phần trăm): a) \(11{x^2} + 4x - 189 = 0\) b) \(2{x^2} - 8\sqrt 2 x + 16 = 0\) c) \(\sqrt 2 {x^2} - \sqrt 3 x + 1 = 0\)
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c: a) \({x^2} - x = 3x + 1\) b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\) c) \({\left( {x + 1} \right)^2} = 2(x - 1)\) d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.
Không giải các phương trình, hãy xác định số nghiệm của mỗi phương trình sau: a) \(6{x^2} - 2x + 9 = 0\) b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\) c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\) d) \(2,3{t^2} + 1,15t - 6,4 = 0\)
Giải các phương trình sau: a) ( - 2{x^2} + x + 1 = 0) b) ({x^2} - x + 4 = 0) c) (4{x^2} - 4x + 1 = 0) d) ( - {x^2} - 4x + 1 = 0) e) ({y^2} - y - 3 = 0) g) ({z^2} - 2sqrt 5 z + 5 = 0)
Tìm các giá trị của m để phương trình \({x^2} - (m + 3)x + {m^2} = 0\) có nghiệm x = 1.
Giải các phương trình sau: a) \({x^2} - x - 1 = 3x + 1\) b) \(\frac{{{x^2} - 9}}{3} + 2 = x(1 - x)\) c) \({\left( {x + 2} \right)^2} - 3(x + 2) + 2 = 0\) d) \(2{x^4} + 3{x^2} - 2 = 0\)
Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?