Giải toán 9 bài 2 trang 59, 60, 61 Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Mục 1 trang 59

Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).

Mục 2 trang 60

Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?

Mục 3 trang 60, 61

Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?

Mục 4 trang 61, 62

Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

Mục 5 trang 62, 63, 64

a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

Bài 3.13 trang 64

Rút gọn các biểu thức sau: a) \(\sqrt {25{a^4}} - 2{a^2}\); b) \(3\sqrt {4{b^6}} + 7{b^3}\) với \(b < 0\); c) \(\frac{1}{{x - y}}\sqrt {{x^4}{{\left( {x - y} \right)}^2}} \) với \(x > y\); d) \(\sqrt {0,3} .\sqrt {270{z^2}} \).

Bài 3.14 trang 64

Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).

Bài 3.15 trang 64

Tìm x, biết: a) \(\sqrt 3 x - \sqrt {48} = 0\); b) \(2\sqrt 5 x + \sqrt {80} = \sqrt {125} - \sqrt {45} \).

Bài 3.16 trang 64

Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{2\sqrt 6 + 1}}{{4\sqrt 6 }}\); b) \(\frac{{\sqrt 5 - 3}}{{\sqrt 5 + 3}}\); c) \(\frac{4}{{\sqrt {10} - \sqrt 8 }}\); d) \(\frac{{ab}}{{2\sqrt a - \sqrt b }}\); e) \(\frac{{3x}}{{4\sqrt x - 1}}\); g) \(\frac{{\sqrt m + \sqrt n }}{{m\sqrt n }}\).

Bài 3.17 trang 64

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }}\); b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}}\); c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\); d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }}\).

Bài 3.18 trang 65

Sắp xếp các số sau theo thứ tự tăng dần: a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \); b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).

Bài 3.19 trang 65

Diện tích A của hình tròn bán kính r được tính bởi công thức \(A = \pi {r^2}\). a) Viết biểu thức tính r theo A từ công thức trên. b) Diện tích của hình tròn \({C_1}\) gấp 9 lần diện tích của hình tròn \({C_2}\) thì bán kính của hình tròn \({C_1}\) gấp bao nhiêu lần bán kính của hình tròn \({C_2}\)?

Bài 3.20 trang 65

Vào ngày 06/01/2020, ông Thành đầu tư hết 100 triệu đồng vào một tài khoản đầu tư chứng khoán. Đến cuối ngày 06/01/2021, tài khoản đầu tư của ông tăng gấp k lần. Đến cuối ngày 06/01/2022, tài khoản đó tăng thêm 0,8k lần so với tài khoản cuối ngày 06/01/2021. Gọi S (triệu đồng) là số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022. a) Viết biểu thức tính S theo k. b) Viết biểu thức tính k theo S. Nếu số tiền trong tài khoản đầu tư của ông Thành cuối ngày 06/01/2022 là 180 triệu đ

Bài 3.21 trang 65

Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường. (Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137) a) Viết biểu thức tính v theo l và Fr từ công thức trên. b) Ước tính tốc độ di chuyể

Lý thuyết Căn thức bậc hai

1. Căn thức bậc hai Khái niệm căn thức bậc hai Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A, còn A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.


Cùng chủ đề:

Giải toán 9 bài 2 trang 7, 8, 9 Cùng khám phá
Giải toán 9 bài 2 trang 8, 9, 10 Cùng khám phá
Giải toán 9 bài 2 trang 35, 36, 37 Cùng khám phá
Giải toán 9 bài 2 trang 37, 38, 39 Cùng khám phá
Giải toán 9 bài 2 trang 50, 51, 52 Cùng khám phá
Giải toán 9 bài 2 trang 59, 60, 61 Cùng khám phá
Giải toán 9 bài 2 trang 69, 70, 71 Cùng khám phá
Giải toán 9 bài 2 trang 83, 84, 85 Cùng khám phá
Giải toán 9 bài 2 trang 97, 98, 99 Cùng khám phá
Giải toán 9 bài 2 trang 103, 104, 105 Cùng khám phá
Giải toán 9 bài 3 trang 16, 17, 18 Cùng khám phá