Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai
Đưa thừa số ra ngoài dấu căn
1. Đưa thừa số ra ngoài dấu căn
Với hai biểu thức A, B mà \(B\geq 0\), ta có \(\sqrt{A^{2}B}=\left | A \right |\sqrt{B;}\) tức là:
Nếu \(A\geq 0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=A\sqrt{B}\);
Nếu \(A<0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=-A\sqrt{B}\).
Ví dụ: Với \(x\ge 0\) ta có: \(\sqrt {48{x^2}} = \sqrt {3.16{x^2}} \)\(= \sqrt {{{\left( {4x} \right)}^2}.3} = 4x\sqrt 3 \)
2. Đưa thừa số vào trong dấu căn
Với \(A\geq 0\) và \(B\geq 0\) thì \(A\sqrt{B}=\sqrt{A^{2}B};\)
Với \(A<0\) và \(B\geq 0\) thì \(A\sqrt{B}=-\sqrt{A^{2}B}.\)
Ví dụ: Với \(x<0\) ta có: \(x\sqrt 3 = - \sqrt {3{x^2}} \)
Cùng chủ đề:
Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai