Nghiệm của bất phương trình bậc nhất hai ẩn - Miền nghiệm và cách biểu diễn miền nghiệm — Không quảng cáo

Lý thuyết Toán lớp 10 Lý thuyết Bất phương trình bậc nhất hai ẩn Toán 10


Nghiệm của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm

Cặp số \(({x_0};{y_0})\) thỏa mãn \(a{x_0} + b{y_0} \le c\) được gọi là một nghiệm của bất phương trình \(ax + by \le c\).

1. Lý thuyết

+ Định nghĩa:

Cặp số \(({x_0};{y_0})\) thỏa mãn \(a{x_0} + b{y_0} \le c\) được gọi là một nghiệm của bất phương trình \(ax + by \le c\).

Nghiệm của các bất phương trình \(ax + by < c;ax + by > c;ax + by \ge c\) được định nghĩa tương tự.

Trong mặt phẳng tọa độ \(Oxy\), miền nghiệm của bất phương trình \(ax + by \le c\) là tập hợp các điểm \(({x_0};{y_0})\) sao cho \(a{x_0} + b{y_0} \le c\).

+ Nhận xét

Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm .

+ Biểu diễn miền nghiệm của bất phương trình \(ax + by \le c\)

Bước 1: Vẽ đường thẳng \(\Delta :ax + by = c\)

Bước 2: Lấy điểm \(A({x_0};{y_0})\) không thuộc \(\Delta \). Tính \(a{x_0} + b{y_0}\) rồi so sánh với c.

Bước 3: Kết luận

Nếu \(a{x_0} + b{y_0} < c\) thì miền nghiệm là nửa mặt phẳng (kể cả bờ \(\Delta \)) chứa điểm \(A({x_0};{y_0})\).

Nếu \(a{x_0} + b{y_0} > c\) thì miền nghiệm là nửa mặt phẳng (kể cả bờ \(\Delta \)) không chứa điểm \(A({x_0};{y_0})\).

Chú ý : Đường thẳng \(\Delta :ax + by = c\) là tập hợp các điểm (x;y) thỏa mãn \(ax + by = c\).

Do đó miền nghiệm của các bất phương trình \(ax + by < c;ax + by > c\) không chứa đường thẳng \(\Delta \) (hay không kể bờ \(\Delta \)), khi đó ta thường vẽ \(\Delta \) bằng nét đứt.

2. Ví dụ minh họa

+ Nghiệm của bất phương trình bậc nhất hai ẩn :

Cặp số \((2; - 1)\) là một nghiệm của bất phương trình \(3x + 2y \ge  - 5\), vì  \(3.2 + 2.( - 1) = 4 \ge  - 5\)

Cặp số \(( - 2;0)\) không là một nghiệm của bất phương trình \(3x + 2y \ge  - 5\), vì  \(3.( - 2) + 2.0 =  - 6 <  - 5\)

+ Biểu diễn miền nghiệm của bất phương trình \(2x - y > 2\)

Bước 1: Vẽ đường thẳng \(\Delta :2x - y = 2\) (nét đứt) đi qua (1;0) và (0; -2).

Bước 2: Lấy điểm \(O(0;0)\) không thuộc \(\Delta \). Ta có \(2.0 - 0 = 0\) và \(c = 2\).

Bước 3: Vì  \(2.0 - 0 = 0 < 2\) nên điểm \(O(0;0)\) không thuộc miền nghiệm.

Vậy miền nghiệm là nửa mặt phẳng (không kể bờ \(\Delta \)) không chứa điểm \(O(0;0)\) (miền không gạch chéo).


Cùng chủ đề:

Lý thuyết toán 10 chương 1 mệnh đề và tập hợp
Lý thuyết toán 10 chương 2 bất phương trình và hệ bất phương trình bậc nhất hai ẩn
Lý thuyết toán 10 chương 3 hàm số bậc hai và đồ thị
Lý thuyết toán 10 chương 4 hệ thức lượng trong tam giác
Mệnh để phủ định - Cách phủ định một mệnh đề - Phủ định mệnh đề có chứa kí hiệu với mọi, tồn tại
Nghiệm của bất phương trình bậc nhất hai ẩn - Miền nghiệm và cách biểu diễn miền nghiệm
Nửa đường tròn đơn vị - Giá trị lượng giác của một góc - Cách xác định điểm trên nửa đường tròn đơn vị tương ứng với góc - Cách xác định góc tương ứng với điểm trên nửa đường tròn đơn vị
Phép giao - Phép hợp - Hiệu của hai tập hợp - Phần bù
Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt
Sự biến thiên của hàm số bậc hai - Hàm số đồng biến - Hàm số nghịch biến
Tam thức bậc hai