Sự biến thiên của hàm số bậc hai - Hàm số đồng biến - Hàm số nghịch biến — Không quảng cáo

Lý thuyết Toán lớp 10 Lý thuyết Hàm số bậc hai Toán 10


Sự biến thiên của hàm số bậc hai.

(a > 0) Hàm số nghịch biến trên (( - infty ; - frac{b}{{2a}})), đồng biến trên (( - frac{b}{{2a}}; + infty ))

1. Lý thuyết

Cho hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\)

Trên khoảng \(( - \infty ; - \frac{b}{{2a}})\)

Trên khoảng \(( - \frac{b}{{2a}}; + \infty )\)

\(a > 0\)

Hàm số nghịch biến

Hàm số đồng biến

\(a < 0\)

Hàm số đồng biến

Hàm số nghịch biến

+ Bảng biến thiên

+ Chú ý

Từ bảng biến thiên, ta thấy

Khi \(a > 0\), hàm số đạt giá trị nhỏ nhất bằng \( - \frac{{{b^2} - 4ac}}{{4a}}\) tại \(x =  - \frac{b}{{2a}}\) và hàm số có tập giá trị là \([ - \frac{{{b^2} - 4ac}}{{4a}}; + \infty )\)

Khi \(a < 0\), hàm số đạt giá trị lớn nhất bằng \( - \frac{{{b^2} - 4ac}}{{4a}}\) tại \(x =  - \frac{b}{{2a}}\) và hàm số có tập giá trị là \(( - \infty ; - \frac{{{b^2} - 4ac}}{{4a}}]\)

2. Ví dụ minh họa

Ví dụ 1. Xét sự biến thiên của hàm số \(y = {x^2} + 2x + 2\)

Hàm số \(y = {x^2} + 2x + 2\) có \(a = 1,b = 2,c = 2\)

\( \Rightarrow  - \frac{b}{{2a}} =  - \frac{2}{{2.1}} =  - 1;y( - 1) = {( - 1)^2} + 2.( - 1) + 2 = 1\)

Bảng biến thiên

Hàm số đồng biến trên \(( - 1; + \infty )\), nghịch biến trên \(( - \infty ; - 1)\)

Ví dụ 2. Lập bảng biến thiên và tìm khoảng đồng biến, nghịch biến của hàm số \(y =  - {x^2} + 2x\)

Hàm số \(y =  - {x^2} + 2x\) có \(a =  - 1,b = 2,c = 0\)

\( \Rightarrow  - \frac{b}{{2a}} =  - \frac{2}{{2.( - 1)}} = 1;y(1) =  - {1^2} + 2.1 = 1\)

Bảng biến thiên

Hàm số đồng biến trên \(( - \infty ;1)\), nghịch biến trên \((1; + \infty )\)


Cùng chủ đề:

Mệnh để phủ định - Cách phủ định một mệnh đề - Phủ định mệnh đề có chứa kí hiệu với mọi, tồn tại
Nghiệm của bất phương trình bậc nhất hai ẩn - Miền nghiệm và cách biểu diễn miền nghiệm
Nửa đường tròn đơn vị - Giá trị lượng giác của một góc - Cách xác định điểm trên nửa đường tròn đơn vị tương ứng với góc - Cách xác định góc tương ứng với điểm trên nửa đường tròn đơn vị
Phép giao - Phép hợp - Hiệu của hai tập hợp - Phần bù
Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt
Sự biến thiên của hàm số bậc hai - Hàm số đồng biến - Hàm số nghịch biến
Tam thức bậc hai
Tập hợp - Cách mô tả tập hợp
Tập hợp con - Hai tập hợp bằng nhau
Tập xác định, tập giá trị của hàm số là - Tìm tập xác định, tập gía trị của hàm số cho trước
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F=ax+by trên một miền đa giác - Ứng dung của hệ bất phương trình bậc nhất hai ẩn