Tập hợp - Cách mô tả tập hợp — Không quảng cáo

Lý thuyết Toán lớp 10 Lý thuyết Tập hợp Toán 10


Tập hợp. Cách mô tả tập hợp

Tập hợp dùng để chỉ một nhóm đối tượng nào đó hoàn toàn xác định. Mỗi đối tượng trong nhóm gọi là một phần tử của tập hợp đó.

1. Lý thuyết

+ Định nghĩa:

Tập hợp dùng để chỉ một nhóm đối tượng nào đó hoàn toàn xác định .

Mỗi đối tượng trong nhóm gọi là một phần tử của tập hợp đó.

+ Kí hiệu

Tập hợp thường được kí hiệu bằng các chữ cái in hoa A, B, C, …

Kí hiệu phần tử bằng các chữ cái in thường a, b, c, …

Số phần tử của tập hợp A là: \(n(A)\)

+ Cách xác định (mô tả) tập hợp:

Cách 1: Liệt kê các phần tử.

Cách 2: Chỉ ra tính chất đặc trưng.

+ Lưu ý khi liệt kê các phần tử của tập hợp:

Các phần tử có thể được viết theo thứ tự tùy ý

Mỗi phần tử chỉ được liệt kê một lần, ngăn cách nhau bởi dấu “;”

Nếu quy tắc xác định các phần tử đủ rõ thì dùng “…” mà không nhất thiết viết ra tất cả các phần tử của tập hợp đó.

+ Để chỉ a là một phần tử của tập hợp A, ta viết \(a \in A\).

+ Để chỉ a không là một phần tử của tập hợp A, ta viết \(a \notin A\).

Tập hợp không chứa phần tử nào gọi là tập rỗng , kí hiệu \(\emptyset \)

2. Ví dụ minh họa

Ví dụ về tập hợp

Các học sinh của lớp 10A tạo thành một tập hợp. Các học sinh nam của lớp này cũng tạo thành một tập hợp.

Các nghiệm của phương trình \({x^2} - 2x - 3 = 0\) tạo thành một tập hợp, gọi là tập nghiệm của phương trình \({x^2} - 2x - 3 = 0\). Tập hợp này có hai phần tử là -1 và 3.

Ví dụ về cách mô tả tập hợp

Xét tập hợp A các số tự nhiên lẻ nhỏ hơn 10.

Cách viết đúng:

Liệt kê các phần tử: \(A = \left\{ {1;3;5;7;9} \right\}\) hoặc \(A = \left\{ {1;9;5;3;7} \right\}\)

Chỉ ra tính chất đặc trưng:\(A = \{ n|n \in \mathbb{N},n\) lẻ và \(n < 10\} \)

Cách viết sai:

\(A = \left\{ {1,3,5,7,9} \right\}\) (sai vì các phần tử ngăn cách nhau bởi dấu “,”)

\(A = \left\{ {1;3;5;7;9;3} \right\}\) (sai vì phần tử 3 được liệt kê hai lần)


Cùng chủ đề:

Nửa đường tròn đơn vị - Giá trị lượng giác của một góc - Cách xác định điểm trên nửa đường tròn đơn vị tương ứng với góc - Cách xác định góc tương ứng với điểm trên nửa đường tròn đơn vị
Phép giao - Phép hợp - Hiệu của hai tập hợp - Phần bù
Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt
Sự biến thiên của hàm số bậc hai - Hàm số đồng biến - Hàm số nghịch biến
Tam thức bậc hai
Tập hợp - Cách mô tả tập hợp
Tập hợp con - Hai tập hợp bằng nhau
Tập xác định, tập giá trị của hàm số là - Tìm tập xác định, tập gía trị của hàm số cho trước
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F=ax+by trên một miền đa giác - Ứng dung của hệ bất phương trình bậc nhất hai ẩn
Điểm thuộc, không thuộc đồ thị hàm số - Vẽ đồ thị hàm số
Định nghĩa mệnh đề chứa biến - Phân biệt mệnh đề và mệnh đề chứa biến