Trắc nghiệm toán 6 bài 4 chương 1 chân trời sáng tạo có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo có đáp án Bài tập trắc nghiệm Chương 1: Số tự nhiên


Trắc nghiệm Bài 4: Lũy thừa với số mũ tự nhiên Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

Chọn câu sai .

  • A.

    \({a^m}.{a^n} = {a^{m + n}}\)

  • B.

    \({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$

  • C.

    \({a^0} = 1\)

  • D.

    \({a^1} = 0\)

Câu 2 :

Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là

  • A.

    \({10^5}\)

  • B.

    \({10^4}\)

  • C.

    \({100^2}\)

  • D.

    \({20^5}\)

Câu 3 :

Tính giá trị của lũy thừa \({2^6},\) ta được

  • A.

    \(32\)

  • B.

    \(64\)

  • C.

    \(16\)

  • D.

    \(128\)

Câu 4 :

Cơ số và số mũ của \({2019^{2020}}\) lần lượt là:

  • A.

    2019 và 2020

  • B.

    2020 và 2019

  • C.

    2019 và \({2019^{2020}}\)

  • D.

    \({2019^{2020}}\) và 2019

Câu 5 :

Viết tích \({a^4}.{a^6}\) dưới dạng một lũy thừa ta được

  • A.

    \({a^8}\)

  • B.

    \({a^9}\)

  • C.

    \({a^{10}}\)

  • D.

    \({a^2}\)

Câu 6 :

Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?

  • A.

    \({5^{17}}\)

  • B.

    \({17^5}\)

  • C.

    \({17^{11}}\)

  • D.

    \({17^6}\)

Câu 7 :

Chọn câu đúng.

  • A.

    \({5^2}{.5^3}{.5^4} = {5^{10}}\)

  • B.

    \({5^2}{.5^3}:{5^4} = 5\)

  • C.

    \({5^3}:5 = 5\)

  • D.

    \({5^1} = 1\)

Câu 8 :

Chọn câu sai.

  • A.

    \({5^3} < {3^5}\)

  • B.

    \({3^4} > {2^5}\)

  • C.

    \({4^3} = {2^6}\)

  • D.

    \({4^3} > {8^2}\)

Câu 9 :

Tính \({2^4} + 16\) ta được kết quả dưới dạng lũy thừa là

  • A.

    \({2^{20}}\)

  • B.

    \({2^4}\)

  • C.

    \({2^5}\)

  • D.

    \({2^{10}}\)

Câu 10 :

Tìm số tự nhiên \(n\) biết \({3^n} = 81.\)

  • A.

    \(n = 2\)

  • B.

    \(n = 4\)

  • C.

    \(n = 5\)

  • D.

    \(n = 8\)

Lời giải và đáp án

Câu 1 :

Chọn câu sai .

  • A.

    \({a^m}.{a^n} = {a^{m + n}}\)

  • B.

    \({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$

  • C.

    \({a^0} = 1\)

  • D.

    \({a^1} = 0\)

Đáp án : D

Phương pháp giải :

Sử dụng các công thức chia hai lũy thừa cùng cơ số; nhân hai lũy thừa cùng cơ số và các qui ước

Lời giải chi tiết :

Ta có với $ a,m,n \in N$ thì

+ \({a^m}.{a^n} = {a^{m + n}}\) nên A đúng

+ \({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$ nên B đúng

+ $a^0=1$ nên C đúng.

+ \({a^1} = a\) nên D sai.

Câu 2 :

Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là

  • A.

    \({10^5}\)

  • B.

    \({10^4}\)

  • C.

    \({100^2}\)

  • D.

    \({20^5}\)

Đáp án : A

Phương pháp giải :

+ Tách \(100 = 10.10\)

+ Viết dưới dạng lũy thừa với cơ số $10.$

Lời giải chi tiết :

Ta có \(10.10.10.100\)\( = 10.10.10.10.10 = {10^5}\)

Câu 3 :

Tính giá trị của lũy thừa \({2^6},\) ta được

  • A.

    \(32\)

  • B.

    \(64\)

  • C.

    \(16\)

  • D.

    \(128\)

Đáp án : B

Phương pháp giải :

Sử dụng công thức \({a^n} = a.a.a...a\) (\(n\) thừa số $a$) để tính giá trị.

Lời giải chi tiết :

Ta có \({2^6} = 2.2.2.2.2.2 = 4.4.4 = 16.4 = 64.\)

Câu 4 :

Cơ số và số mũ của \({2019^{2020}}\) lần lượt là:

  • A.

    2019 và 2020

  • B.

    2020 và 2019

  • C.

    2019 và \({2019^{2020}}\)

  • D.

    \({2019^{2020}}\) và 2019

Đáp án : A

Phương pháp giải :

Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:

\({a^n} = a.a \ldots ..a\) ( \(n\) thừa số \(a\) ) ( \(n \notin \mathbb{N}*\) )

\(a\) được gọi là cơ số .

\(n\) được gọi là số mũ .

Lời giải chi tiết :

\({2019^{2020}}\) có cơ số là 2019 và số mũ là 2020.

Câu 5 :

Viết tích \({a^4}.{a^6}\) dưới dạng một lũy thừa ta được

  • A.

    \({a^8}\)

  • B.

    \({a^9}\)

  • C.

    \({a^{10}}\)

  • D.

    \({a^2}\)

Đáp án : C

Phương pháp giải :

Sử dụng công thức nhân hai lũy thừa cùng cơ số ${a^m}.{a^n} = {a^{m + n}}$

Lời giải chi tiết :

Ta có \({a^4}.{a^6}\)\( = {a^{4 + 6}} = {a^{10}}\)

Câu 6 :

Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?

  • A.

    \({5^{17}}\)

  • B.

    \({17^5}\)

  • C.

    \({17^{11}}\)

  • D.

    \({17^6}\)

Đáp án : B

Phương pháp giải :

Sử dụng công thức chia hai lũy thừa cùng cơ số ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)

Lời giải chi tiết :

Ta có \({17^8}:{17^3}\)\( = {17^{8 - 3}} = {17^5}\)

Câu 7 :

Chọn câu đúng.

  • A.

    \({5^2}{.5^3}{.5^4} = {5^{10}}\)

  • B.

    \({5^2}{.5^3}:{5^4} = 5\)

  • C.

    \({5^3}:5 = 5\)

  • D.

    \({5^1} = 1\)

Đáp án : B

Phương pháp giải :

Sử dụng các công thức ${a^m}.{a^n} = {a^{m + n}}$; ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)

Lời giải chi tiết :

+) Ta có \({5^2}{.5^3}{.5^4} = {5^{2 + 3 + 4}} = {5^9}\) nên A sai.

+) \({5^2}{.5^3}:{5^4} = {5^{2 + 3 - 4}} = {5^1} = 5\) nên B đúng

+) \({5^3}:5 = {5^{3 - 1}} = {5^2};\,{5^1} = 5\) nên C;D sai.

Câu 8 :

Chọn câu sai.

  • A.

    \({5^3} < {3^5}\)

  • B.

    \({3^4} > {2^5}\)

  • C.

    \({4^3} = {2^6}\)

  • D.

    \({4^3} > {8^2}\)

Đáp án : D

Phương pháp giải :

So sánh các lũy thừa bằng cách tính giá trị rồi so sánh.

Lời giải chi tiết :

Cách giải:

+) Ta có \({5^3} = 5.5.5 = 125\); \({3^5} = 3.3.3.3.3 = 243\) nên \({5^3} < {3^5}\) ( A đúng)

+) \({3^4} = 3.3.3.3 = 81\) và \({2^5} = 2.2.2.2.2 = 32\) nên \({3^4} > {2^5}\) ( B đúng)

+) \({4^3} = 4.4.4 = 64\) và \({2^6} = 2.2.2.2.2.2 = 64\) nên \({4^3} = {2^6}\) ( C đúng)

+) \({4^3} = 64;{8^2} = 64\) nên \({4^3} = {8^2}\) ( D sai)

Câu 9 :

Tính \({2^4} + 16\) ta được kết quả dưới dạng lũy thừa là

  • A.

    \({2^{20}}\)

  • B.

    \({2^4}\)

  • C.

    \({2^5}\)

  • D.

    \({2^{10}}\)

Đáp án : C

Phương pháp giải :

Tính \({2^4}\) theo định nghĩa lũy thừa rồi cộng kết quả với \(16.\) Từ đó lại sử dụng định nghĩa lũy thừa để viết kết quả thu được dưới dạng lũy thừa.

Lời giải chi tiết :

Ta có \({2^4} + 16 = 2.2.2.2 + 16 = 16 + 16 = 32\) \( = 2.2.2.2.2 = {2^5}\).

Câu 10 :

Tìm số tự nhiên \(n\) biết \({3^n} = 81.\)

  • A.

    \(n = 2\)

  • B.

    \(n = 4\)

  • C.

    \(n = 5\)

  • D.

    \(n = 8\)

Đáp án : B

Phương pháp giải :

Đưa hai vế về hai lũy thừa cùng số mũ rồi sử dụng \({a^n} = {a^m}\left( {a \ne 0;a \ne 1} \right)\) thì \(n = m.\)

Lời giải chi tiết :

Ta có  \({3^n} = 81\) mà \(81 = {3^4}\) nên \({3^n} = {3^4}\) suy ra \(n = 4.\)


Cùng chủ đề:

Trắc nghiệm toán 6 bài 3 chương 5 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 3 chương 7 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 3 chương 8 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 (tiếp) chương 2 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 (tiếp) chương 3 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 2 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 4 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 5 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 6 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 bài 4 chương 8 chân trời sáng tạo có đáp án