Bài 2 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 2. Giới hạn của hàm số Toán 11 Chân trời sáng tạo


Bài 2 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{ - {x^2}}&{khi\,\,x < 1}\\x&{khi\,\,x \ge 1}\end{array}} \right.\).

Đề bài

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{ - {x^2}}&{khi\,\,x < 1}\\x&{khi\,\,x \ge 1}\end{array}} \right.\).

Tìm các giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right);\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) (nếu có).

Phương pháp giải - Xem chi tiết

− Để tính giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\), ta áp dụng định lý về giới hạn bên trái và giới hạn bên phải của hàm số.

− Để tính giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\), ta so sánh hai giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right);\mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\).

• Nếu \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right) = L\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = L\).

• Nếu \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Lời giải chi tiết

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} x = 1\).

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - {x^2}} \right) =  - {1^2} =  - 1\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).


Cùng chủ đề:

Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 69 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 84 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo