Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 3 Toán 11 Chân trời sáng tạo


Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng:

Đề bài

Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng:

A. \(\frac{3}{4}\).

B. \(\frac{5}{4}\).

C. \(\frac{4}{3}\).

D. \(\frac{6}{5}\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\): \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)

Lời giải chi tiết

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{4}\) nên: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ... = \frac{1}{{1 - \frac{1}{4}}} = \frac{4}{3}\)

Chọn C.


Cùng chủ đề:

Bài 2 trang 69 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 84 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 2 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 2 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo