Bài 21 trang 19 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số


Bài 21 trang 19 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\);

b) \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

Hệ a) ta nhân phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình.

Hệ b) ta nhân phương trình thứ nhất với \(\sqrt 2\), rồi cộng từng vế hai phương trình.

Lời giải chi tiết

a) Nhân cả hai vế của phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình, ta được:

\(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y = -\sqrt{2}& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y+2x+ \sqrt{2}.y = -\sqrt{2}-2& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4\sqrt{2}.y = -\sqrt{2} - 2& & \\ 2x + y\sqrt{2} = -2& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-\sqrt{2} - 2}{4\sqrt 2}& & \\ 2x + y\sqrt{2} = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x = -y\sqrt{2} -2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =- \dfrac{-1-\sqrt{2}}{4}.\sqrt{2}  -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =\dfrac{\sqrt 2 -6}{4}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =\dfrac{\sqrt 2 -6}{8}& & \\ y= \dfrac{-1-\sqrt{2}}{4}& & \end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là: (\(\dfrac{\sqrt 2 -6}{8}; \dfrac{-1-\sqrt{2}}{4}\))

b) Nhân hai vế của phương trình thứ nhất với \(\sqrt{2}\), rồi cộng từng vế hai phương trình.

Ta có \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)

Suy ra

\(\left\{\begin{matrix} 5\sqrt 6 x + y \sqrt 2 = 4 & & \\ x \sqrt 6 - y \sqrt 2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6 \sqrt 6 x=6 & & \\ x \sqrt 6 -y \sqrt 2 =2 & & \end{matrix}\right.\)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{1}{\sqrt 6} & &\\  y \sqrt 2 = x \sqrt 6 -2& & \end{matrix} \right. \)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y \sqrt 2 = \dfrac{1}{\sqrt 6}. \sqrt 6 -2& & \end{matrix} \right.\)

\( \Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y\sqrt 2  =1-2=-1& & \end{matrix} \right.\)

\( \Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y  = \dfrac{-1}{\sqrt 2}=- \dfrac{\sqrt 2}{2}& & \end{matrix} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \( {\left(\dfrac{\sqrt 6}{6}; -\dfrac{\sqrt 2}{2} \right)}\)


Cùng chủ đề:

Bài 20 trang 76 SGK Toán 9 tập 2
Bài 20 trang 84 SGK Toán 9 tập 1
Bài 20 trang 110 SGK Toán 9 tập 1
Bài 20 trang 118 SGK Toán 9 tập 2
Bài 21 trang 15 SGK Toán 9 tập 1
Bài 21 trang 19 SGK Toán 9 tập 2
Bài 21 trang 49 SGK Toán 9 tập 2
Bài 21 trang 54 SGK Toán 9 tập 1
Bài 21 trang 76 SGK Toán 9 tập 2
Bài 21 trang 84 SGK Toán 9 tập 1
Bài 21 trang 111 SGK Toán 9 tập 1