Bài 21 trang 49 SGK Toán 9 tập 2
Giải vài phương trình của
Giải vài phương trình của An Khô-va-ri-zmi (Xem Toán 7, Tập 2, tr.26):
LG a
\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288\)
Phương pháp giải:
Bước 1: Thực hiện chuyển các số hạng sang vế trái, vế phải bằng \(0\).
Bước 2: Áp dụng công thức tính nghiệm thu gọn: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac.\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)
Lời giải chi tiết:
Ta có:
\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288{\rm{ }} \Leftrightarrow {\rm{ }}{x^2} - {\rm{ }}12x{\rm{ }} - {\rm{ }}288{\rm{ }} = {\rm{ }}0\)
\(\Rightarrow \Delta' {\rm{ }} = {\rm{ }}{\left( { - 6} \right)^{2}}-{\rm{ }}1{\rm{ }}.{\rm{ }}\left( { - 288} \right){\rm{ }} = {\rm{ }}36{\rm{ }} + {\rm{ }}288{\rm{ }} = {\rm{ }}324 > 0 \)
Do đó phương trình đã cho có hai nghiệm phân biệt:
\({x_1} =\dfrac{6-\sqrt{324}}{1}=6-18=-12\).
\({x_2} =\dfrac{6+\sqrt{324}}{1}=6+18=24\).
LG b
\(\dfrac{1}{12}x^2 + \dfrac{7}{12}x = 19\)
Phương pháp giải:
Bước 1: Thực hiện chuyển các số hạng sang vế trái, vế phải bằng \(0\). Qui đồng và bỏ mẫu.
Bước 2: Áp dụng công thức nghiệm của phương trình: \(ax^2+bx+c=0\) (\(a \ne 0\)) với biệt thức: \(\Delta =b^2-4ac.\)
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};\ x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
Lời giải chi tiết:
Ta có:
\(\dfrac{1}{12}{x^2} + \dfrac{7 }{12}x = 19\)
\(\Leftrightarrow {x^2} + 7x-228= 0\)
\(\Rightarrow {\rm{ }}\Delta {\rm{ }} = {\rm{ }}49{\rm{ }}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 228} \right){\rm{ }} = {\rm{ }}49{\rm{ }} + {\rm{ }}912{\rm{ }}\)
\(= {\rm{ }}961{\rm{ }} = {\rm{ }}{31^2} > 0\)
Do đó phương trình đã cho có hai nghiệm phân biệt:
\({x_1} =\dfrac{ - 7 + 31}{2} = 12,\)
\({x_2} = \dfrac{ - 7 - 31}{2} = - 19\)