Bài 21 trang 54 SGK Toán 9 tập 1
Cho hàm số bậc nhất y = mx + 3
Đề bài
Cho hàm số bậc nhất \(y = mx + 3\) và \(y = (2m + 1)x - 5\). Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng song song với nhau;
b) Hai đường thẳng cắt nhau.
Phương pháp giải - Xem chi tiết
a) + Điều kiện để hàm số đã cho là hàm bậc nhất là \(a \ne 0\).
+ Hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\) và \((d')\): \(y=a'x+b'\) \((a' \ne 0)\) song song khi và chỉ khi \(a = a'\) và \(b \ne b'\)
b) + Điều kiện để hàm số đã cho là hàm bậc nhất là \(a \ne 0\).
+ Hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\) và \((d')\): \(y=a'x+b'\) \((a' \ne 0)\) cắt nhau khi và chỉ khi \( a \ne a'\)
Lời giải chi tiết
Ta có:
+ \(y = mx + 3 \Rightarrow \left\{ \matrix{ a = m \hfill \cr b = 3 \hfill \cr} \right.\)
+ \(y = (2m + 1)x - 5 \Rightarrow \left\{ \matrix{ a' = 2m + 1 \hfill \cr b' = - 5 \hfill \cr} \right.\)
+ Để hai hàm số đã cho là hàm bậc nhất thì ta cần có các hệ số \(a\) và \(a'\) khác \(0\), tức là:
\(\left\{ \matrix{ m \ne 0 \hfill \cr 2m + 1 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m \ne 0 \hfill \cr 2m \ne - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m \ne 0 \hfill \cr m \ne \dfrac{-1}{2} \hfill \cr} \right.\)
a) Để hai đường thẳng song song thì:
\(\left\{ \matrix{ {a} = {a'} \hfill \cr {b} \ne {b'} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m = 2m + 1 \hfill \cr 3 \ne - 5 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{ m - 2m = 1 \hfill \cr 3 \ne - 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ m = - 1 (thỏa \ mãn \ điều \ kiện)\hfill \cr 3 \ne - 5 (luôn\ đúng) \hfill \cr} \right.\)
Vậy \(m=-1\) thì hai đường thẳng trên song song với nhau.
b) Để hai đường thẳng cắt nhau thì:
\(a \ne a' \Leftrightarrow m\neq 2m+1\)
\(\Leftrightarrow m-2m \neq 1\)
\(\Leftrightarrow -m \ne 1\)
\(\Leftrightarrow m \ne -1\)
Kết hợp với điều kiện trên, ta có \(m \ne -1,\ m \ne 0,\ m \ne \dfrac{-1}{2}\) thì hai đường thẳng trên cắt nhau.