Bài 33 trang 19 SGK Toán 9 tập 1
Giải phương trình
Giải phương trình
LG a
\(\sqrt 2 .x - \sqrt {50} = 0\)
Phương pháp giải:
Sử dụng các công thức
+ \(\sqrt {AB} = \sqrt A .\sqrt B \,\left( {A;B \ge 0} \right)\)
+ \(\dfrac{\sqrt A}{\sqrt B}=\sqrt{\dfrac{A}{B}}\) (với \( A\ge 0;B>0\))
+ \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l} A\,\,\,\,\,{\rm{khi}}\,\,A \ge 0\\ - A\,\,{\rm{khi}}\,\,A < 0 \end{array} \right.\)
Lời giải chi tiết:
\(\sqrt{2}.x - \sqrt{50} = 0\)
\(\Leftrightarrow \sqrt{2}x=\sqrt{50}\)
\(\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}\)
\(\Leftrightarrow x =\sqrt{\dfrac{50}{2}}\)
\(\Leftrightarrow x= \sqrt{25}\)
\(\Leftrightarrow x= \sqrt{5^2}\)
\(\Leftrightarrow x=5\).
Vậy \(x=5\).
LG b
\(\sqrt 3 .x + \sqrt 3 = \sqrt {12} + \sqrt {27}\)
Phương pháp giải:
Sử dụng các công thức
+ \(\sqrt {AB} = \sqrt A .\sqrt B \,\left( {A;B \ge 0} \right)\)
+ \(\dfrac{\sqrt A}{\sqrt B}=\sqrt{\dfrac{A}{B}}\) (với \( A\ge 0;B>0\))
+ \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l} A\,\,\,\,\,{\rm{khi}}\,\,A \ge 0\\ - A\,\,{\rm{khi}}\,\,A < 0 \end{array} \right.\)
Lời giải chi tiết:
\(\sqrt{3}.x + \sqrt{3} = \sqrt{12} + \sqrt{27}\)
\( \Leftrightarrow \sqrt{3}.x = \sqrt{12} + \sqrt{27} - \sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=\sqrt{4.3}+\sqrt{9.3}- \sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=\sqrt{4}. \sqrt{3}+\sqrt{9}. \sqrt{3}- \sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=\sqrt{2^2}. \sqrt{3}+\sqrt{3^2}. \sqrt{3}- \sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=2 \sqrt{3}+3\sqrt{3}- \sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=(2+3-1).\sqrt{3}\)
\(\Leftrightarrow \sqrt{3}.x=4\sqrt{3}\)
\(\Leftrightarrow x=4\).
Vậy \(x=4\).
LG c
\(\sqrt 3 .{x^2} - \sqrt {12} = 0\)
Phương pháp giải:
Sử dụng các công thức
+ \(\sqrt {AB} = \sqrt A .\sqrt B \,\left( {A;B \ge 0} \right)\)
+ \(\dfrac{\sqrt A}{\sqrt B}=\sqrt{\dfrac{A}{B}}\) (với \( A\ge 0;B>0\))
+ \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l} A\,\,\,\,\,{\rm{khi}}\,\,A \ge 0\\ - A\,\,{\rm{khi}}\,\,A < 0 \end{array} \right.\)
Lời giải chi tiết:
\(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow \sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow \sqrt{3}x^2=\sqrt{4.3}\)
\(\Leftrightarrow \sqrt{3}x^2=\sqrt{4}.\sqrt 3\)
\(\Leftrightarrow x^2=\sqrt{4}\)
\(\Leftrightarrow x^2=\sqrt{2^2}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow \sqrt{x^2}=\sqrt{2}\)
\(\Leftrightarrow |x|= \sqrt 2\)
\(\Leftrightarrow x= \pm \sqrt 2\).
Vậy \(x= \pm\sqrt 2\).
LG d
\(\dfrac{x^2}{\sqrt 5 } - \sqrt {20} = 0\)
Phương pháp giải:
Sử dụng các công thức
+ \(\sqrt {AB} = \sqrt A .\sqrt B \,\left( {A;B \ge 0} \right)\)
+ \(\dfrac{\sqrt A}{\sqrt B}=\sqrt{\dfrac{A}{B}}\) (với \( A\ge 0;B>0\))
+ \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l} A\,\,\,\,\,{\rm{khi}}\,\,A \ge 0\\ - A\,\,{\rm{khi}}\,\,A < 0 \end{array} \right.\)
Lời giải chi tiết:
\(\dfrac{x^{2}}{\sqrt{5}}- \sqrt{20} = 0\)
\(\Leftrightarrow \dfrac{x^2}{\sqrt{5}}=\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{20}.\sqrt{5}\)
\(\Leftrightarrow x^2=\sqrt{20.5}\)
\(\Leftrightarrow x^2=\sqrt{100}\)
\(\Leftrightarrow x^2=\sqrt{10^2}\)
\(\Leftrightarrow x^2=10\)
\(\Leftrightarrow \sqrt{x^2}=\sqrt {10}\)
\(\Leftrightarrow |x|=\sqrt{10}\)
\(\Leftrightarrow x=\pm \sqrt{10}\).
Vậy \(x= \pm \sqrt{10}\).