Bài 40 trang 83 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh


Bài 40 trang 83 SGK Toán 9 tập 2

Qua điểm S nằm bên ngoài đường tròn (O)

Đề bài

Qua điểm \(S\) nằm bên ngoài đường tròn \((O)\), vẽ tiếp tuyến \(SA\) và cát tuyến \(SBC\) của đường tròn. Tia phân giác của \(\widehat{BAC}\) cắt dây \(BC\) tại \(D.\) Chứng minh \(SA = SD.\)

Phương pháp giải - Xem chi tiết

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+) Số đo của góc tạo bởi tiếp tuyến của dây cung bằng nửa số đo cung bị chắn.

+) 2 góc nội tiếp bằng nhau chắn 2 cung bằng nhau.

Lời giải chi tiết

Gọi \(E\) là giao điểm thứ hai của \(AD\) với đường tròn \((O).\)

Xét đường tròn \((O)\) ta có:

+) \(\widehat{ADS}\) là góc có đỉnh nằm trong đường tròn chắn cung \(AB\) và \(CE.\)

\(\Rightarrow \widehat {ADS}=\dfrac{sđ\overparen{AB}+sđ\overparen{CE}}{2}.\)  (1)

+) \(\widehat{SAD}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung \(AE.\)

\(\Rightarrow \widehat {SAD}=\dfrac{1}{2} sđ\overparen{AE}.\)  (2)

+) Có: \(\widehat {BAE} = \widehat {EAC}\) (do \(AE\) là phân giác góc \(BAC\))

\(\Rightarrow \) \(\overparen{BE}=\overparen{EC}\) (hai góc nội tiếp bằng nhau chắn hai cung bằng nhau).

\(\Rightarrow sđ\overparen{AB} + sđ\overparen{BE}= sđ\overparen{AB} + sđ\overparen{EC}\)\( sđ\overparen{AE}\) (3)

Từ (1) và (3) \(\Rightarrow \widehat {ADS}=\dfrac{sđ\overparen{AE}}{2}\) (4)

Từ (2) và (4) \(\Rightarrow\widehat {ADS}=\widehat {SAD}\)\(\Rightarrow\) tam giác \(SDA\) cân tại \(S\) hay \(SA=SD\).


Cùng chủ đề:

Bài 39 trang 123 SGK Toán 9 tập 1
Bài 39 trang 129 SGK Toán 9 tập 2
Bài 40 trang 23 SGK Toán 9 tập 1
Bài 40 trang 27 SGK Toán 9 tập 2
Bài 40 trang 57 SGK Toán 9 tập 2
Bài 40 trang 83 SGK Toán 9 tập 2
Bài 40 trang 95 SGK Toán 9 tập 1
Bài 40 trang 123 SGK Toán 9 tập 1
Bài 40 trang 129 SGK Toán 9 tập 2
Bài 41 trang 23 SGK Toán 9 tập 1
Bài 41 trang 27 SGK Toán 9 tập 2