Bài 5. 8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 16. Giới hạn của hàm số Toán 11 kết nối tri thức


Bài 5.8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức

Tính các giới hạn sau: a) (mathop {{rm{lim}}}limits_{x to 0} frac{{{{left( {x + 2} right)}^2} - 4}}{x}); b) (mathop {{rm{lim}}}limits_{x to 0} ) (frac{{sqrt {{x^2} + 9} - 3}}{{{x^2}}})

Đề bài

Tính các giới hạn sau:

a) \(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x}\);

b) \(\mathop {{\rm{lim}}}\limits_{x \to 0} \) \(\frac{{\sqrt {{x^2} + 9}  - 3}}{{{x^2}}}\)

Phương pháp giải - Xem chi tiết

a, Phân tích đa thức thành nhân tử.

b, Nhân cả tử và mẫu với biểu thức liên hợp của tử \((\sqrt A  + B).(\sqrt A  - B) = A - {B^2}\).

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\left( {x + 2} \right)}^2} - 4}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4x}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x + 4} \right) = 4\)

b) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 9}  - 3}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 9}  + 3}} = \frac{1}{6}\)


Cùng chủ đề:

Bài 5. 3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 5 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 7 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 10 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 12 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 13 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức