Bài 5. 6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 15. Giới hạn của dãy số Toán 11 kết nối tri thức


Bài 5.6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức

Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng (alpha ) (H.5.3). Từ A kẻ (A{A_1} bot BC), từ ({A_1}) kẻ ({A_1}{A_2} bot AC), sau đó lại kẻ ({A_2}{A_3} bot BC). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn (A{A_1}{A_2}{A_3} ldots ) Tính độ dài đường gấp khúc này theo h và (alpha )

Đề bài

Cho tam giác vuông ABC vuông tại A , có AB = h và góc B bằng \(\alpha \) (H.5.3). Từ A kẻ \(A{A_1} \bot BC\), từ \({A_1}\) kẻ \({A_1}{A_2} \bot AC\), sau đó lại kẻ \({A_2}{A_3} \bot BC\). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn \(A{A_1}{A_2}{A_3} \ldots \) Tính độ dài đường gấp khúc này theo h và \(\alpha \)

Phương pháp giải - Xem chi tiết

Dựa vào đề bài để tìm ra công thức tổng quát.

Lời giải chi tiết

Độ dài đường gấp khúc tạo thành cấp số nhân với số hạng tổng quát là:

\({u_n} = sin\;\alpha \; \times h \times {\left( {sin\;\alpha \;} \right)^{n - 1}}\).

Độ dài đường gập khúc: \(A{A_1} + {A_2}{A_3} +  \ldots \).

Đây là tổng cấp số nhân lùi vô hạn với \({u_1} = sin\;\alpha \; \times h,\;q = sin\;\alpha \;\).

Nên \(A{A_1} + {A_2}{A_3} +  \ldots  = \frac{{sin\;\alpha \; \times h}}{{1 - sin\;\alpha \;}}\).


Cùng chủ đề:

Bài 5. 1 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 2 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 5 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 7 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 8 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 9 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 10 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức