Bài 6 trang 69 SGK Toán 9 tập 2
Cho tam giác đều ABC.
Đề bài
Cho tam giác đều ABC. Gọi O là tâm của đường tròn đi qua ba đỉnh A,B,C.
a) Tính số đo các góc ở tâm tạo bởi hai trong ba bán kính OA,OB,OC.
b) Tính số đo các cung tạo bởi hai trong ba điểm A,B,C.
Phương pháp giải - Xem chi tiết
Sử dụng:
Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
Số đo của cung lớn bằng hiệu giữa 360o và số đo của cung nhỏ (có chung hai mút với cung lớn)
Lời giải chi tiết
a) Ta có: ˆA=ˆB=ˆC=600 (gt)
Tâm O của đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của ba cạnh cũng chính là giao điểm của ba đường phân giác của tam giác đều ABC.
Nên ^A1=^A2=^B1=^B2=^C1=^C2=300
Suy ra: ^AOB=1800−^A1−^B1=1800−300−300=1200
Tương tự ta suy ra: ^AOB=^BOC=^COA=1200
b) Từ ^AOB=^BOC=^COA=1200 ta suy ra:
sđAB⏜ = 120^0
sđ\overparen{ABC}=sđ\overparen{BCA}=sđ\overparen{CAB} =360^0- 120^0=240^0