Loading [MathJax]/jax/output/CommonHTML/jax.js

Bài 7 trang 46 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số


Bài 7 trang 46 SGK Toán 9 tập 1

Cho hàm số y = f(x) = 3x.

Đề bài

Cho hàm số y=f(x)=3x.

Cho x hai giá trị bất kì x1, x2 sao cho x1<x2 .

Hãy chứng minh f(x1)<f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên R.

Phương pháp giải - Xem chi tiết

+) Định nghĩa hàm số đồng biến:   Với x1,x2R:

Nếu x1<x2  và   f(x1)<f(x2)  thì hàm số y=f(x) đồng biến trên R.

+) Tính chất của bất đẳng thức: Với c>0 thì: a<ba.c<b.c

Lời giải chi tiết

Cách 1:

Ta có:

f(x1)=3x1

f(x2)=3x2

Theo giả thiết, ta có:

x1<x23.x1<3.x2 ( nhân cả 2 vế của bất đẳng thức với 3>0 nên chiều bất đẳng thức không đổi)

f(x1)<f(x2) (vì f(x1)=3x1;f(x2)=3x2)

Vậy với x1<x2 ta được f(x1)<f(x2) nên hàm số y=3x đồng biến trên R.

Cách 2:

Vì x1<x2 nên x1x2<0

Từ đó: f(x1)f(x2)=3x13x2=3(x1x2)<0

Hay f(x1)<f(x2)

Vậy với x1<x2 ta được f(x1)<f(x2) nên hàm số y=3x đồng biến trên R.


Cùng chủ đề:

Bài 6 trang 132 SGK Toán 9 tập 2
Bài 6 trang 134 SGK Toán 9 tập 2
Bài 7 trang 10 SGK Toán 9 tập 1
Bài 7 trang 12 SGK Toán 9 tập 2
Bài 7 trang 38 SGK Toán 9 tập 2
Bài 7 trang 46 SGK Toán 9 tập 1
Bài 7 trang 69 SGK Toán 9 tập 1
Bài 7 trang 69 SGK Toán 9 tập 2
Bài 7 trang 101 SGK Toán 9 tập 1
Bài 7 trang 111 SGK Toán 9 tập 2
Bài 7 trang 132 SGK Toán 9 tập 2