Bài 70 trang 40 SGK Toán 9 tập 1
Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp
Đề bài
Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp
\(\displaystyle a)\sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}}\)
\(\displaystyle b)\sqrt {3{1 \over {16}}.2{{14} \over {25}}.2{{34} \over {81}}}\)
\(\displaystyle c){{\sqrt {640} .\sqrt {34,3} } \over {\sqrt {567} }}\)
\(d)\sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}}\)
Phương pháp giải - Xem chi tiết
\(\begin{array}{l} \sqrt {AB} = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\ \sqrt {{A^2}} = \left| A \right| \end{array}\)
Chú ý: Đổi hỗn số dương sang phân số: \(a\dfrac{b}{c}=\dfrac{a.c+b}{c}\)
Lời giải chi tiết
a)
\(\eqalign{ & \sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}} \cr & = \sqrt {{{25} \over {81}}} .\sqrt {{{16} \over {49}}} .\sqrt {{{196} \over 9}} \cr & = \sqrt {{{\left( {\frac{5}{9}} \right)}^2}} .\sqrt {{{\left( {\frac{4}{7}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{3}} \right)}^2}}\cr & = {5 \over 9}.{4 \over 7}.{{14} \over 3} = {{40} \over {27}} \cr} \)
b)
\(\eqalign{ & \sqrt {3{1 \over {16}}.2{{14} \over {25}}2{{34} \over {81}}} \cr & = \sqrt {{{49} \over {16}}.{{64} \over {25}}.{{196} \over {81}}} \cr & = \sqrt {{{49} \over {16}}} .\sqrt {{{64} \over {25}}} .\sqrt {{{196} \over {81}}} \cr & = \sqrt {{{\left( {\frac{7}{4}} \right)}^2}} .\sqrt {{{\left( {\frac{8}{5}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{9}} \right)}^2}}\cr & = {7 \over 4}.{8 \over 5}.{{14} \over 9} = {{196} \over {45}} \cr} \)
c)
\(\begin{array}{l} \dfrac{{\sqrt {640} .\sqrt {34,3} }}{{\sqrt {567} }} = \sqrt {\dfrac{{640.34,3}}{{567}}} = \sqrt {\dfrac{{64.343}}{{567}}}\\ = \sqrt {\dfrac{{64.49.7}}{{81.7}}} = \sqrt {\dfrac{{64.49}}{{81}}} \\ = \dfrac{{\sqrt {64} .\sqrt {49} }}{{\sqrt {81} }} = \dfrac{{8.7}}{9} = \dfrac{{56}}{9} \end{array}\)
d)
\(\eqalign{ & \sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}} \cr & = \sqrt {21,6.810.\left( {{{11}^2} - {5^2}} \right)} \cr & = \sqrt {216.81.\left( {11 + 5} \right)\left( {11 - 5} \right)} \cr & = \sqrt {{36.6}{{.9}^2}{{.4}^2}.6}\cr& = \sqrt {{36^2}{{.9}^2}{{.4}^2}} = 36.9.4 = 1296 \cr} \)