Bài 71 trang 96 SGK Toán 9 tập 2
Vẽ lại hình tạo bởi các cung tròn dưới đây
Đề bài
Vẽ lại hình tạo bởi các cung tròn dưới đây với tâm lần lượt là \(B, C, D, A\) theo đúng kích thước đã cho (hình vuông \(ABCD\) dài \(1cm\) ). Nếu cách vẽ đường xoắn \(AEFGH\). Tính độ dài đường xoắn đó.
Phương pháp giải - Xem chi tiết
+) Sử dụng thước và compa để vẽ hình.
+) Độ dài của đường tròn bán kính \(R\) là: \(C=2 \pi d\)
Lời giải chi tiết
Cách vẽ: Vẽ hình vuông \(ABCD\) có cạnh dài \(1cm\).
Vẽ \(\dfrac{1}{4}\) đường tròn tâm \(B\), bán kính \(1\) cm, ta có cung \(\overparen{AE}\)
Vẽ \(\dfrac{1}{4}\) đường tròn tâm C, bán kính 2 cm, ta có cung \(\overparen{EF}\)
Vẽ \(\dfrac{1}{4}\) đường tròn tâm D, bán kính 3 cm, ta có cung \(\overparen{FG}\)
Vẽ \(\dfrac{1}{4}\) đường tròn tâm A, bán kính 4 cm, ta có cung \(\overparen{GH}\)
Độ dài đường xoắn:
\({l_\overparen{AE}}\)= \(\dfrac{1}{4}\) . \(2π.1\)
\({l_\overparen{EF}}\)= \(\dfrac{1}{4}\) . \(2π.2\)
\({l_\overparen{FG}}\)= \(\dfrac{1}{4}\) . \(2π.3\)
\({l_\overparen{GH}}\)= \(\dfrac{1}{4}\) . \(2π.4\)
Vậy: Độ dài đường xoắn là:
\({l_\overparen{AE}}\)+\({l_\overparen{EF}}\)+\({l_\overparen{FG}}\)+\({l_\overparen{GH}}\)
\(=\dfrac{1}{4}\) .\( 2π (1+2+3+4) = 5π\)