Bài 9 trang 12 SGK Toán 9 tập 2
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
Đề bài
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)
Phương pháp giải - Xem chi tiết
Đưa hệ phương trình đã cho về dạng
\(\left\{ \begin{array}{l}y = ax + b\,\left( d \right)\\y = a'x + b'\left( {d'} \right)\end{array} \right.\)
Ta so sánh các hệ số \(a,\ b\) và \(a',\ b'\).
Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \) hệ vô nghiệm.
Lời giải chi tiết
a) Ta có:
\(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y = -x + 2 & & \\ 3y = -3x+2 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} y = -x + 2 \, (d) & & \\ y = -x + \dfrac{2}{3} \, (d')& & \end{matrix}\right.\)
Suy ra \(a = -1,\ a' = -1\); \(b = 2,\ b' = \dfrac{2}{3}\) nên \(a = a', b ≠ b'.\)
Do đó hai đường thẳng \((d)\) và \((d')\) song song nhau nên hệ đã cho vô nghiệm.
b) Ta có:
\(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{3}{2}x - \dfrac{1}{2} \,(d) & & \\ y = \dfrac{3}{2}x\, (d')& & \end{matrix}\right.\)
Ta có: \(a = \dfrac{3}{2}, a' = \dfrac{3}{2}\), \(b = -\dfrac{1}{2}, b' = 0\) nên \(a = a', b ≠b'\).
Do đó hai đường thẳng \((d)\) và \((d')\) song song với nhau nên hệ đã cho vô nghiệm.