Câu 1 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
Đề bài
Chứng minh rằng với mọi số nguyên dương n, ta luôn có đẳng thức sau :
\(1 + 2 + 3 + ... + n = {{n\left( {n + 1} \right)} \over 2}\) (1)
Lời giải chi tiết
+) Với n = 1 ta có \(1 = {{1\left( {1 + 1} \right)} \over 2}\) (đúng).
Vậy (1) đúng với n = 1
+) Giả sử (1) đúng với \(n = k\), tức là ta có:
\(1 + 2 + 3 + ... + k = {{k\left( {k + 1} \right)} \over 2}\)
Ta chứng minh (1) đúng với \(n = k + 1\) tức là phải chứng minh :
\(1 + 2 + ... + k + \left( {k + 1} \right) = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2}\)
Thật vậy ta có :
\(\eqalign{ & 1 + 2 + ... + k + \left( {k + 1} \right) \cr & = {{k\left( {k + 1} \right)} \over 2} + \left( {k + 1} \right) \cr & = {{k\left( {k + 1} \right) + 2\left( {k + 1} \right)} \over 2} \cr & = {{\left( {k + 1} \right)\left( {k + 2} \right)} \over 2} \cr} \)
Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi n nguyên dương.